Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Res ; 213: 118145, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35151087

RESUMO

Identification and location of contamination sources is crucial for water resource protection - especially in karst aquifers which provide 25% of the world´s population with water but are highly vulnerable to contamination. Transport-based source tracking is proposed and verified here as a complementary approach to microbial and chemical source tracking in karst aquifers for identifying and locating such sources of contamination and for avoiding ambiguities that might arise from using one method alone. The transport distance is inversely modelled from contaminant breakthrough curves (BTC), based on analytical solutions of the 1D two-region non-equilibrium advection dispersion equation using GNU Octave. Besides the BTC, the model requires reliable estimates of transport velocity and input time. The model is shown to be robust, allows scripted based, automated 2D sensitivity analyses (interplay of two parameters), and can be favourable when distributed numerical models are inappropriate due to insufficient data. Sensitivity analyses illustrate that the model is highly sensitive to the input time, the flow velocity, and the fraction of the mobile fluid region. A conclusive verification approach was performed by applying the method to synthetic data, tracer tests, and event-based field data. Transport distances were correctly modelled for a set of artificial tracer tests using a discharge-velocity relationship that could be established for the respective karst catchment. For the first time such an approach was shown to be applicable to estimate the maximum distance to the contamination source for coliform bacteria in karst spring water combined with microbial source tracking. However, prediction intervals for the transport distance can be large even in well-studied karst catchments mainly related to uncertainties in the flow velocity and the input time. Using a maximum transport distance is proposed to account for less permeable, "slower" pathways. In general, transport-based source tracking might be used wherever transport can be described by the 1D two-region non-equilibrium model, e.g. rivers and fractured or porous aquifers.

2.
Environ Sci Technol ; 50(15): 8028-35, 2016 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-27348254

RESUMO

Although karst aquifers are far more susceptible to contamination than porous aquifers, with the transport of particulate matter being an important factor, little is known about the attenuation of solutes within karst aquifers and even less about the attenuation of particulate matter. These in situ investigations have therefore aimed to systematically identify the processes that influence the transport and attenuation of particles within a karst aquifer through multitracer testing, using four different types of 1 µm fluorescent particles and the fluorescent dye uranine. Each of the types of particles used were detected at the observed spring, which drains the investigated aquifer. However, the transport behavior varied significantly between the various particles and the uranine dye, with the breakthrough of particles occurring slightly earlier than that of uranine. Attenuation was determined from the tracer recovery and attributed to filtration processes. These processes were affected by the hydrophobicity and surface charge of the particles. Carboxylated polystyrene particles with a density and surface charge comparable to pathogenic microorganisms were found to be mobile in groundwater over a distance of about 3 km. No attenuation was observed for plain silica particles. Particles with these characteristics thus pose a major threat to karst spring water as they might occur as contaminants themselves or facilitate the transport of other contaminants.


Assuntos
Água Subterrânea , Movimentos da Água , Fluoresceína , Corantes Fluorescentes , Porosidade
3.
Sci Total Environ ; 547: 356-365, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26795541

RESUMO

The identification and differentiation of different sources of contamination are crucial aspects of risk assessment in water resource protection. This is especially challenging in karst environments due to their highly heterogeneous flow fields. We have investigated the use of two artificial sweeteners, cyclamate and acesulfame, as an indicator set for contamination by wastewater within the rural catchment of a karst spring. The catchment was investigated in detail to identify the sources of artificial sweeteners and quantify their impact. Spring water was analysed following two different but typical recharge events: (1) a rain-on-snow event in winter, when no wastewater overflow from the sewer system was observed, and (2) an intense rainfall event in summer triggering an overflow from a stormwater detention basin. Acesulfame, which is known to be persistent, was quantified in all spring water samples. Its concentrations decreased after the winter event with no associated wastewater spillage but increased during the summer event following a recent input of untreated wastewater. Cyclamate, which is known to be degradable, was only detected following the wastewater inflow incident. The cyclamate signal matched very well the breakthrough of faecal indicator bacteria, indicating a common origin. Knowing the input function, cyclamate was used quantitatively as a tracer in transport modelling and the impact of 'combined sewer overflow' on spring water quality was quantified. Signals from artificial sweeteners were compared to those from bulk parameters (discharge, electrical conductivity and turbidity) and also to those from the herbicides atrazine and isoproturon, which indicate 'old' and 'fresh' flow components, respectively, both originating from croplands. High concentration levels of the artificial sweeteners in untreated wastewater (cyclamate and acesulfame) and in treated wastewater (acesulfame only) make them powerful indicators, especially in rural settings where wastewater input is relatively low, and in karst systems where dilution is often high.


Assuntos
Ciclamatos/análise , Monitoramento Ambiental/métodos , Água Subterrânea/química , Tiazinas/análise , Poluentes Químicos da Água/análise , Chuva , Estações do Ano , Edulcorantes/análise , Águas Residuárias/análise
4.
Sci Total Environ ; 532: 360-7, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26081739

RESUMO

Karst aquifers are known to be highly vulnerable to contamination due to their particular hydraulic characteristics. A number of parameters (such as turbidity, dissolved organic matter concentration, particle size distribution) have been proposed as proxies that can be used to detect changes in water quality or contamination of karst springs. However, most of these are not very specific concerning the source of any contamination. Organic micropollutants (OMPs) such as artificial sweeteners or herbicides are possible source-specific indicators that can be used in karst catchment areas, but real time monitoring is not as yet possible for these compounds. We have investigated the possibility of combining the source-specific features of OMPs with real-time measurements of electrical conductivity (EC) and turbidity by means of ECturbidity hysteresis plots. These plots allow for identifying different hydro-sedimentary processes. Our investigations were carried out at the Gallusquelle karst spring in south-west Germany, during high flow conditions that occurred in 2013 after heavy precipitation. The herbicide atrazine, which derives from the aquifer matrix, was detectable in the spring water until resuspended particles appeared at the spring. The herbicide metazachlor, which is present in recharge from cropland, was found to be associated with periods of direct transfer of particles originating from the land surface. The artificial sweetener cyclamate was used as a wastewater indicator, but neither hysteresis plots of EC and turbidity nor any other real-time parameters were able to detect the presence of cyclamate following a wastewater spill. Since EC and turbidity are easily measurable parameters, the systematic relationships of ECturbidity hysteresis behavior to OMPs might assist in the sustainable management of raw water within karst catchments.


Assuntos
Monitoramento Ambiental , Água Subterrânea/química , Poluentes Químicos da Água/análise , Atrazina/análise , Alemanha , Herbicidas/análise , Movimentos da Água
5.
Water Res ; 47(17): 6650-9, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24070867

RESUMO

The substantial transformation of the angiotensin II receptor antagonist valsartan to the transformation product 2'-(2H-tetrazol-5-yl)-[1,1'-biphenyl]-4-carboxylic acid (referred to as valsartan acid) during the activated sludge process was demonstrated in the literature and confirmed in the here presented study. However, there was a severe lack of knowledge regarding the occurrence and fate of this compound in surface water and its behavior during drinking water treatment. In this work a comparative study on the occurrence and persistency of valsartan acid, three frequently used ß-blockers (metoprolol, atenolol, and sotalol), atenolol acid (one significant transformation product of atenolol and metoprolol), and the two widely distributed persistent anthropogenic wastewater indicators carbamazepine and acesulfame in raw sewage, treated wastewater, surface water, groundwater, and tap water is presented. Median concentrations of valsartan acid in the analyzed matrices were 101, 1,310, 69, <1.0, and 65 ng L(-1), respectively. Treated effluents from wastewater treatment plants were confirmed as significant source. Regarding concentration levels of pharmaceutical residues in surface waters valsartan acid was found just as relevant as the analyzed ß-blockers and the anticonvulsant carbamazepine. Regarding its persistency in surface waters it was comparable to carbamazepine and acesulfame. Furthermore, removal of valsartan acid during bank filtration was poor, which demonstrated the relevance of this compound for drinking water suppliers. Regarding drinking water treatment (Muelheim Process) the compound was resistant to ozonation but effectively eliminated (≥90%) by subsequent activated carbon filtration. However, without applying activated carbon filtration the compound may enter the drinking water distribution system as it was demonstrated for Berlin tap water.


Assuntos
Antagonistas Adrenérgicos beta/isolamento & purificação , Antagonistas de Receptores de Angiotensina/isolamento & purificação , Tetrazóis/isolamento & purificação , Tiazinas/isolamento & purificação , Valina/análogos & derivados , Águas Residuárias/química , Ciclo Hidrológico , Poluentes Químicos da Água/isolamento & purificação , Antagonistas de Receptores de Angiotensina/química , Carbamazepina , Água Potável/química , Geografia , Alemanha , Água Subterrânea/química , Atividades Humanas , Humanos , Propriedades de Superfície , Tetrazóis/química , Valina/química , Valina/isolamento & purificação , Valsartana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...