Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 21(16): 164206, 2009 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-21825386

RESUMO

After an introduction into 100 years of research on superfluidity and the concept of the BCS-BEC crossover, we describe recent experimental studies of a spin-polarized Fermi gas with strong interactions. Tomographically resolving the spatial structure of an inhomogeneous trapped sample, we have mapped out the superfluid phases in the parameter space of temperature, spin polarization, and interaction strength. Phase separation between the superfluid and the normal component occurs at low temperatures, showing spatial discontinuities in the spin polarization. The critical polarization of the normal gas increases with stronger coupling. Beyond a critical interaction strength all minority atoms pair with majority atoms, and the system can be effectively described as a boson-fermion mixture. Pairing correlations have been studied by rf spectroscopy, determining the fermion pair size and the pairing gap energy in a resonantly interacting superfluid.

2.
Phys Rev Lett ; 99(9): 090403, 2007 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-17930995

RESUMO

We present spatially resolved radio-frequency spectroscopy of a trapped Fermi gas with resonant interactions and observe a spectral gap at low temperatures. The spatial distribution of the spectral response of the trapped gas is obtained using in situ phase-contrast imaging and 3D image reconstruction. At the lowest temperature, the homogeneous rf spectrum shows an asymmetric excitation line shape with a peak at 0.48(4)epsilonF with respect to the free atomic line, where epsilonF is the local Fermi energy.

3.
Science ; 316(5826): 867-70, 2007 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-17495165

RESUMO

We used radio-frequency spectroscopy to study pairing in the normal and superfluid phases of a strongly interacting Fermi gas with imbalanced spin populations. At high spin imbalances, the system does not become superfluid even at zero temperature. In this normal phase, full pairing of the minority atoms was observed. Hence, mismatched Fermi surfaces do not prevent pairing but can quench the superfluid state, thus realizing a system of fermion pairs that do not condense even at the lowest temperature.

4.
Phys Rev Lett ; 98(5): 050404, 2007 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-17358831

RESUMO

We study the expansion of a rotating, superfluid Fermi gas. The presence and absence of vortices in the rotating gas are used to distinguish the superfluid and normal parts of the expanding cloud. We find that the superfluid pairs survive during the expansion until the density decreases below a critical value. Our observation of superfluid flow in the expanding gas at 1/kFa=0 extends the range where fermionic superfluidity has been studied to densities of 1.2x10(11) cm(-3), about an order of magnitude lower than any previous study.

5.
Phys Rev Lett ; 97(3): 030401, 2006 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-16907486

RESUMO

We have observed phase separation between the superfluid and the normal component in a strongly interacting Fermi gas with imbalanced spin populations. The in situ distribution of the density difference between two trapped spin components is obtained using phase-contrast imaging and 3D image reconstruction. A shell structure is clearly identified where the superfluid region of equal densities is surrounded by a normal gas of unequal densities. The phase transition induces a dramatic change in the density profiles as excess fermions are expelled from the superfluid.

6.
Nature ; 435(7045): 1047-51, 2005 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-15973400

RESUMO

Quantum degenerate Fermi gases provide a remarkable opportunity to study strongly interacting fermions. In contrast to other Fermi systems, such as superconductors, neutron stars or the quark-gluon plasma of the early Universe, these gases have low densities and their interactions can be precisely controlled over an enormous range. Previous experiments with Fermi gases have revealed condensation of fermion pairs. Although these and other studies were consistent with predictions assuming superfluidity, proof of superfluid behaviour has been elusive. Here we report observations of vortex lattices in a strongly interacting, rotating Fermi gas that provide definitive evidence for superfluidity. The interaction and therefore the pairing strength between two 6Li fermions near a Feshbach resonance can be controlled by an external magnetic field. This allows us to explore the crossover from a Bose-Einstein condensate of molecules to a Bardeen-Cooper-Schrieffer superfluid of loosely bound pairs. The crossover is associated with a new form of superfluidity that may provide insights into high-transition-temperature superconductors.

7.
Phys Rev Lett ; 93(22): 223201, 2004 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-15601088

RESUMO

We observed quantum reflection of ultracold atoms from the attractive potential of a solid surface. Extremely dilute Bose-Einstein condensates of 23Na, with peak density 10(11)-10(12) atoms/cm(3), confined in a weak gravitomagnetic trap were normally incident on a silicon surface. Reflection probabilities of up to 20% were observed for incident velocities of 1-8 mm/s. The velocity dependence agrees qualitatively with the prediction for quantum reflection from the attractive Casimir-Polder potential. Atoms confined in a harmonic trap divided in half by a solid surface exhibited extended lifetime due to quantum reflection from the surface, implying a reflection probability above 50%.

8.
Phys Rev Lett ; 92(15): 150401, 2004 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-15169269

RESUMO

Bose-Einstein condensates of sodium atoms, prepared in an optical dipole trap, were distilled into a second empty dipole trap adjacent to the first one. The distillation was driven by thermal atoms spilling over the potential barrier separating the two wells and then forming a new condensate. This process serves as a model system for metastability in condensates, provides a test for quantum kinetic theories of condensate formation, and also represents a novel technique for creating or replenishing condensates in new locations.

9.
Science ; 301(5639): 1513-5, 2003 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-12970559

RESUMO

Spin-polarized gaseous Bose-Einstein condensates were confined by a combination of gravitational and magnetic forces. The partially condensed atomic vapors were adiabatically decompressed by weakening the gravito-magnetic trap to a mean frequency of 1hertz, then evaporatively reduced in size to 2500 atoms. This lowered the peak condensate density to 5 x 10(10) atoms per cubic centimeter and cooled the entire cloud in all three dimensions to a kinetic temperature of 450 +/- 80 picokelvin. Such spin-polarized, dilute, and ultracold gases are important for spectroscopy, metrology, and atom optics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...