Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 24237, 2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-34930947

RESUMO

Highly accurate segmentation of large 3D volumes is a demanding task. Challenging applications like the segmentation of synchrotron radiation microtomograms (SRµCT) at high-resolution, which suffer from low contrast, high spatial variability and measurement artifacts, readily exceed the capacities of conventional segmentation methods, including the manual segmentation by human experts. The quantitative characterization of the osseointegration and spatio-temporal biodegradation process of bone implants requires reliable, and very precise segmentation. We investigated the scaling of 2D U-net for high resolution grayscale volumes by three crucial model hyper-parameters (i.e., the model width, depth, and input size). To leverage the 3D information of high-resolution SRµCT, common three axes prediction fusing is extended, investigating the effect of adding more than three axes prediction. In a systematic evaluation we compare the performance of scaling the U-net by intersection over union (IoU) and quantitative measurements of osseointegration and degradation parameters. Overall, we observe that a compound scaling of the U-net and multi-axes prediction fusing with soft voting yields the highest IoU for the class "degradation layer". Finally, the quantitative analysis showed that the parameters calculated with model segmentation deviated less from the high quality results than those obtained by a semi-automatic segmentation method.


Assuntos
Biodegradação Ambiental , Síncrotrons , Microtomografia por Raio-X/métodos , Artefatos , Aprendizado Profundo , Reações Falso-Positivas , Humanos , Processamento de Imagem Assistida por Computador , Ciência dos Materiais , Redes Neurais de Computação , Osseointegração , Próteses e Implantes , Reprodutibilidade dos Testes
2.
Science ; 372(6542): 642-646, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33811162

RESUMO

The coronavirus disease (COVID-19) caused by SARS-CoV-2 is creating tremendous human suffering. To date, no effective drug is available to directly treat the disease. In a search for a drug against COVID-19, we have performed a high-throughput x-ray crystallographic screen of two repurposing drug libraries against the SARS-CoV-2 main protease (Mpro), which is essential for viral replication. In contrast to commonly applied x-ray fragment screening experiments with molecules of low complexity, our screen tested already-approved drugs and drugs in clinical trials. From the three-dimensional protein structures, we identified 37 compounds that bind to Mpro In subsequent cell-based viral reduction assays, one peptidomimetic and six nonpeptidic compounds showed antiviral activity at nontoxic concentrations. We identified two allosteric binding sites representing attractive targets for drug development against SARS-CoV-2.


Assuntos
Sítio Alostérico , Antivirais/química , Domínio Catalítico , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/química , Desenvolvimento de Medicamentos , Inibidores de Proteases/química , SARS-CoV-2/enzimologia , Animais , Antivirais/farmacologia , Chlorocebus aethiops , Cristalografia por Raios X , Avaliação Pré-Clínica de Medicamentos , Inibidores de Proteases/farmacologia , SARS-CoV-2/efeitos dos fármacos , Células Vero , Replicação Viral/efeitos dos fármacos
3.
Cell ; 139(1): 212-212.e1, 2009 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-19804764

RESUMO

The translational apparatus is one of the major targets for antibiotics in the bacterial cell. Antibiotics predominantly interact with the functional centers of the ribosome, namely the messenger RNA (mRNA)-transfer RNA (tRNA) decoding region on the 30S subunit, the peptidyltransferase center on the 50S subunit, or the ribosomal exit tunnel through which the nascent polypeptide chain passes during translation. Protein synthesis can be divided into three phases: initiation, elongation, and termination/recycling.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , Bactérias/genética , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , RNA Bacteriano/metabolismo , RNA de Transferência/metabolismo , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo
5.
Biol Chem ; 386(12): 1239-52, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16336118

RESUMO

In the cell, the protein synthetic machinery is a highly complex apparatus that offers many potential sites for functional interference and therefore represents a major target for antibiotics. The recent plethora of crystal structures of ribosomal subunits in complex with various antibiotics has provided unparalleled insight into their mode of interaction and inhibition. However, differences in the conformation, orientation and position of some of these drugs bound to ribosomal subunits of Deinococcus radiodurans (D50S) compared to Haloarcula marismortui (H50S) have raised questions regarding the species specificity of binding. Revisiting the structural data for the bacterial D50S-antibiotic complexes reveals that the mode of binding of the macrolides, ketolides, streptogramins and lincosamides is generally similar to that observed in the archaeal H50S structures. However, small discrepancies are observed, predominantly resulting from species-specific differences in the ribosomal proteins and rRNA constituting the drug-binding sites. Understanding how these small alterations at the binding site influence interaction with the drug will be essential for rational design of more potent inhibitors.


Assuntos
Antibacterianos/metabolismo , Antibacterianos/farmacologia , Ribossomos/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Sítios de Ligação , Deinococcus/genética , Deinococcus/metabolismo , Farmacorresistência Bacteriana , Haloarcula marismortui/genética , Haloarcula marismortui/metabolismo , Cetolídeos/metabolismo , Lincosamidas , Macrolídeos/metabolismo , Dados de Sequência Molecular , Estrutura Molecular , RNA Ribossômico/química , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , Ribossomos/química , Ribossomos/genética , Especificidade da Espécie , Estreptograminas/metabolismo
6.
Structure ; 13(11): 1685-94, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16271892

RESUMO

This study presents the X-ray structure of the N-terminal binding domain of the D. radiodurans trigger factor (TF) in complex with the D. radiodurans large ribosomal subunit. At 3.35 A, a complete description of the interactions with ribosomal proteins L23, L29, and 23S rRNA are disclosed, many of which differ from those found previously for a heterologous bacterial-archaeal TF-ribosome complex. The beta hairpin loop of eubacterial L24, which is shorter in archaeal ribosomes, contacts the TF and severely diminishes the molecular cradle proposed to exist between the TF and ribosome. Bound to the ribosome, TF exposes a hydrophobic crevice large enough to accommodate the nascent polypeptide chain. Superimposition of the full-length TF and the signal-recognition particle (SRP) onto the complex shows that simultaneous cohabitation is possible, in agreement with biochemical data, and suggests a model for the interplay of TF, SRP, and the nascent chain during translation.


Assuntos
Proteínas de Bactérias/química , Deinococcus/química , Chaperonas Moleculares/química , Dobramento de Proteína , Proteínas Ribossômicas/química , Proteínas Ribossômicas/fisiologia , Partícula de Reconhecimento de Sinal/química , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/fisiologia , Sítios de Ligação , Deinococcus/genética , Deinococcus/fisiologia , Interações Hidrofóbicas e Hidrofílicas , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/fisiologia , Dados de Sequência Molecular , Peptídeos/química , Peptídeos/metabolismo , Peptídeos/fisiologia , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Ribossômicas/metabolismo , Partícula de Reconhecimento de Sinal/metabolismo , Partícula de Reconhecimento de Sinal/fisiologia
7.
Cell ; 121(7): 991-1004, 2005 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-15989950

RESUMO

The L7/12 stalk of the large subunit of bacterial ribosomes encompasses protein L10 and multiple copies of L7/12. We present crystal structures of Thermotoga maritima L10 in complex with three L7/12 N-terminal-domain dimers, refine the structure of an archaeal L10E N-terminal domain on the 50S subunit, and identify these elements in cryo-electron-microscopic reconstructions of Escherichia coli ribosomes. The mobile C-terminal helix alpha8 of L10 carries three L7/12 dimers in T. maritima and two in E. coli, in concordance with the different length of helix alpha8 of L10 in these organisms. The stalk is organized into three elements (stalk base, L10 helix alpha8-L7/12 N-terminal-domain complex, and L7/12 C-terminal domains) linked by flexible connections. Highly mobile L7/12 C-terminal domains promote recruitment of translation factors to the ribosome and stimulate GTP hydrolysis by the ribosome bound factors through stabilization of their active GTPase conformation.


Assuntos
Escherichia coli/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Proteínas Ribossômicas/química , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Thermotoga maritima/metabolismo , Sequência de Aminoácidos , Sítios de Ligação/fisiologia , Microscopia Crioeletrônica , Cristalografia por Raios X , Ativação Enzimática/fisiologia , Escherichia coli/genética , Escherichia coli/ultraestrutura , Modelos Moleculares , Dados de Sequência Molecular , Fatores de Iniciação em Procariotos/metabolismo , Estrutura Secundária de Proteína/fisiologia , Estrutura Terciária de Proteína/fisiologia , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , RNA Ribossômico/metabolismo , Proteína Ribossômica L10 , Proteínas Ribossômicas/ultraestrutura , Ribossomos/genética , Ribossomos/ultraestrutura , Thermotoga maritima/genética , Thermotoga maritima/ultraestrutura
8.
Mol Microbiol ; 54(5): 1287-94, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15554968

RESUMO

Tiamulin, a prominent member of the pleuromutilin class of antibiotics, is a potent inhibitor of protein synthesis in bacteria. Up to now the effect of pleuromutilins on the ribosome has not been determined on a molecular level. The 3.5 A structure of the 50S ribosomal subunit from Deinococcus radiodurans in complex with tiamulin provides for the first time a detailed picture of its interactions with the 23S rRNA, thus explaining the molecular mechanism of the antimicrobial activity of the pleuromutilin class of antibiotics. Our results show that tiamulin is located within the peptidyl transferase center (PTC) of the 50S ribosomal subunit with its tricyclic mutilin core positioned in a tight pocket at the A-tRNA binding site. Also, the extension, which protrudes from its mutilin core, partially overlaps with the P-tRNA binding site. Thereby, tiamulin directly inhibits peptide bond formation. Comparison of the tiamulin binding site with other PTC targeting drugs, like chloramphenicol, clindamycin and streptogramins, may facilitate the design of modified or hybridized drugs that extend the applicability of this class of antibiotics.


Assuntos
Deinococcus/química , Diterpenos/química , Diterpenos/farmacologia , Inibidores da Síntese de Proteínas/química , Ribossomos/química , Cristalografia por Raios X , Deinococcus/efeitos dos fármacos , Diterpenos/metabolismo , Modelos Moleculares , Peptidil Transferases/antagonistas & inibidores , Compostos Policíclicos , Conformação Proteica , Inibidores da Síntese de Proteínas/farmacologia , RNA Ribossômico 23S/química , RNA Ribossômico 23S/metabolismo , Ribossomos/metabolismo , Pleuromutilinas
9.
BMC Biol ; 2: 4, 2004 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-15059283

RESUMO

BACKGROUND: The bacterial ribosome is a primary target of several classes of antibiotics. Investigation of the structure of the ribosomal subunits in complex with different antibiotics can reveal the mode of inhibition of ribosomal protein synthesis. Analysis of the interactions between antibiotics and the ribosome permits investigation of the specific effect of modifications leading to antimicrobial resistances. Streptogramins are unique among the ribosome-targeting antibiotics because they consist of two components, streptogramins A and B, which act synergistically. Each compound alone exhibits a weak bacteriostatic activity, whereas the combination can act bactericidal. The streptogramins A display a prolonged activity that even persists after removal of the drug. However, the mode of activity of the streptogramins has not yet been fully elucidated, despite a plethora of biochemical and structural data. RESULTS: The investigation of the crystal structure of the 50S ribosomal subunit from Deinococcus radiodurans in complex with the clinically relevant streptogramins quinupristin and dalfopristin reveals their unique inhibitory mechanism. Quinupristin, a streptogramin B compound, binds in the ribosomal exit tunnel in a similar manner and position as the macrolides, suggesting a similar inhibitory mechanism, namely blockage of the ribosomal tunnel. Dalfopristin, the corresponding streptogramin A compound, binds close to quinupristin directly within the peptidyl transferase centre affecting both A- and P-site occupation by tRNA molecules. CONCLUSIONS: The crystal structure indicates that the synergistic effect derives from direct interaction between both compounds and shared contacts with a single nucleotide, A2062. Upon binding of the streptogramins, the peptidyl transferase centre undergoes a significant conformational transition, which leads to a stable, non-productive orientation of the universally conserved U2585. Mutations of this rRNA base are known to yield dominant lethal phenotypes. It seems, therefore, plausible to conclude that the conformational change within the peptidyl transferase centre is mainly responsible for the bactericidal activity of the streptogramins and the post-antibiotic inhibition of protein synthesis.


Assuntos
Antibacterianos/farmacologia , Peptidil Transferases/metabolismo , Ribossomos/efeitos dos fármacos , Virginiamicina/análogos & derivados , Antibacterianos/metabolismo , Sítios de Ligação/efeitos dos fármacos , Cristalização , Deinococcus/efeitos dos fármacos , Deinococcus/enzimologia , Sinergismo Farmacológico , Peptidil Transferases/química , RNA Ribossômico 23S/química , RNA Ribossômico 23S/metabolismo , Proteínas Ribossômicas/química , Proteínas Ribossômicas/metabolismo , Ribossomos/química , Ribossomos/enzimologia , Virginiamicina/metabolismo , Virginiamicina/farmacologia
10.
Structure ; 11(3): 329-38, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12623020

RESUMO

The azalide azithromycin and the ketolide ABT-773, which were derived by chemical modifications of erythromycin, exhibit elevated activity against a number of penicillin- and macrolide-resistant pathogenic bacteria. Analysis of the crystal structures of the large ribosomal subunit from Deinococcus radiodurans complexed with azithromycin or ABT-773 indicates that, despite differences in the number and nature of their contacts with the ribosome, both compounds exert their antimicrobial activity by blocking the protein exit tunnel. In contrast to all macrolides studied so far, two molecules of azithromycin bind simultaneously to the tunnel. The additional molecule also interacts with two proteins, L4 and L22, implicated in macrolide resistance. These studies illuminated and rationalized the enhanced activity of the drugs against specific macrolide-resistant bacteria.


Assuntos
Antibacterianos/química , Azitromicina/química , Eritromicina/química , Cetolídeos , Antibacterianos/metabolismo , Azitromicina/metabolismo , Eritromicina/análogos & derivados , Eritromicina/metabolismo , RNA Ribossômico , Ribossomos/metabolismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...