Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38714894

RESUMO

BACKGROUND: Extreme heat and air pollution is associated with increased mortality. Recent evidence suggests the combined effects of both is greater than the effects of each individual exposure. Low neighborhood socioeconomic status ("socioeconomic burden") has also been associated with increased exposure and vulnerability to both heat and air pollution. We investigated if neighborhood socioeconomic burden or the combination of socioeconomic and environmental exposures ("socioenvironmental burden") modified the effect of combined exposure to extreme heat and particulate air pollution on mortality in California. METHODS: We used a time-stratified case-crossover design to assess the impact of daily exposure to extreme particulate matter <2.5 µm (PM2.5) and heat on cardiovascular, respiratory, and all-cause mortality in California 2014-2019. Daily average PM2.5 and maximum temperatures based on decedent's residential census tract were dichotomized as extreme or not. Census tract-level socioenvironmental and socioeconomic burden was assessed with the CalEnviroScreen (CES) score and a social deprivation index (SDI), and individual educational attainment was derived from death certificates. Conditional logistic regression was used to estimate associations of heat and PM2.5 with mortality with a product term used to evaluate effect measure modification. RESULTS: During the study period 1,514,292 all-cause deaths could be assigned residential exposures. Extreme heat and air pollution alone and combined were associated with increased mortality, matching prior reports. Decedents in census tracts with higher socioenvironmental and socioeconomic burden experienced more days with extreme PM2.5 exposure. However, we found no consistent effect measure modification by CES or SDI on combined or separate extreme heat and PM2.5 exposure on odds of total, cardiovascular or respiratory mortality. No effect measure modification was observed for individual education attainment. CONCLUSION: We did not find evidence that neighborhood socioenvironmental- or socioeconomic burden significantly influenced the individual or combined impact of extreme exposures to heat and PM2.5 on mortality in California. IMPACT: We investigated the effect measure modification by socioeconomic and socioenvironmental of the co-occurrence of heat and PM2.5, which adds support to the limited previous literature on effect measure modification by socioeconomic and socioenvironmental burden of heat alone and PM2.5 alone. We found no consistent effect measure modification by neighborhood socioenvironmental and socioeconomic burden or individual level SES of the mortality association with extreme heat and PM2.5 co-exposure. However, we did find increased number of days with extreme PM2.5 exposure in neighborhoods with high socioenvironmental and socioeconomic burden. We evaluated multiple area-level and an individual-level SES and socioenvironmental burden metrics, each estimating socioenvironmental factors differently, making our conclusion more robust.

2.
Sci Total Environ ; 874: 162462, 2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-36858215

RESUMO

BACKGROUND: Higher ambient temperature and air pollution may contribute to increased risk of behaviors harmful to oneself or to others; however, quantitative evidence is limited. We examined the relationship of deaths due to suicide and homicide with temperature and air pollution in California-a state prone to high levels of both exposures. METHOD: California death certificates from 2014 to 2019 were used to identify deaths due to suicide and homicide. Residential data for decedents were used to assign exposure to daily temperature (maximum[Tmax], minimum[Tmin]) and daily average air pollution concentrations (particulate matter <10 µm[PM10] and < 2.5 µm[PM2.5], nitrogen dioxide[NO2], ozone[O3]). Tmin served as a surrogate for nighttime temperature. A time-stratified case-crossover study design using conditional logistic regression was used to assess the effects of daily exposure to temperature and air pollutants on suicide and homicide mortality, adjusting for relative humidity. Effect modification by sex and age was assessed. RESULTS: We observed 24,387 deaths due to suicide and 10,767 deaths due to homicide. We found a monotonic temperature association for both outcomes. A 5 °C increase in Tmax at lag-2 and Tmin at lag-0 was associated with 3.1 % (95 % confidence interval [CI]: 1.1 %-5.2 %) and 3.8 % (95%CI: 0.9 %-6.8 %) increased odds of death due to suicide, respectively. The increased odds of homicide mortality per 5 °C increase in Tmax at lag-0 and Tmin at lag-1 were 4.9 % (95%CI: 1.6 %-8.1 %) and 6.2 % (95%CI: 1.6 %-11.0 %), respectively. No air pollutant associations were statistically significant. Temperature associations were robust after adjustment for PM2.5. Some temperature effects were larger among women for suicide and men for homicide mortality, and among those over age 65 years for both outcomes. CONCLUSION: Risk of suicide and homicide mortality increases with increasing daily ambient temperatures. Findings have public health relevance given anticipated increases in temperatures due to global climate change.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ozônio , Suicídio , Masculino , Humanos , Feminino , Idoso , Temperatura , Estudos Cross-Over , Homicídio , Poluição do Ar/análise , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Material Particulado/efeitos adversos , Material Particulado/análise , Ozônio/análise , Dióxido de Nitrogênio/análise , Exposição Ambiental/efeitos adversos
3.
Am J Respir Crit Care Med ; 206(9): 1117-1127, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35727303

RESUMO

Rationale: Extremes of heat and particulate air pollution threaten human health and are becoming more frequent because of climate change. Understanding the health impacts of coexposure to extreme heat and air pollution is urgent. Objectives: To estimate the association of acute coexposure to extreme heat and ambient fine particulate matter (PM2.5) with all-cause, cardiovascular, and respiratory mortality in California from 2014 to 2019. Methods: We used a case-crossover study design with time-stratified matching using conditional logistic regression to estimate mortality associations with acute coexposures to extreme heat and PM2.5. For each case day (date of death) and its control days, daily average PM2.5 and maximum and minimum temperatures were assigned (0- to 3-day lag) on the basis of the decedent's residence census tract. Measurements and Main Results: All-cause mortality risk increased 6.1% (95% confidence interval [CI], 4.1-8.1) on extreme maximum temperature-only days and 5.0% (95% CI, 3.0-8.0) on extreme PM2.5-only days, compared with nonextreme days. Risk increased by 21.0% (95% CI, 6.6-37.3) on days with exposure to both extreme maximum temperature and PM2.5. Increased risk of cardiovascular and respiratory mortality on extreme coexposure days was 29.9% (95% CI, 3.3-63.3) and 38.0% (95% CI, -12.5 to 117.7), respectively, and were more than the sum of individual effects of extreme temperature and PM2.5 only. A similar pattern was observed for coexposure to extreme PM2.5 and minimum temperature. Effect estimates were larger over age 75 years. Conclusions: Short-term exposure to extreme heat and air pollution alone were individually associated with increased risk of mortality, but their coexposure had larger effects beyond the sum of their individual effects.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Doenças Respiratórias , Humanos , Idoso , Poluentes Atmosféricos/efeitos adversos , Temperatura Alta , Estudos Cross-Over , Mudança Climática , Poluição do Ar/efeitos adversos , Material Particulado/efeitos adversos , California , Poeira , Doenças Respiratórias/induzido quimicamente , Exposição Ambiental/efeitos adversos , Mortalidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...