Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 182
Filtrar
1.
eNeuro ; 11(5)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38688718

RESUMO

Singing-based treatments of aphasia can improve language outcomes, but the neural benefits of group-based singing in aphasia are unknown. Here, we set out to determine the structural neuroplasticity changes underpinning group-based singing-induced treatment effects in chronic aphasia. Twenty-eight patients with at least mild nonfluent poststroke aphasia were randomized into two groups that received a 4-month multicomponent singing intervention (singing group) or standard care (control group). High-resolution T1 images and multishell diffusion-weighted MRI data were collected in two time points (baseline/5 months). Structural gray matter (GM) and white matter (WM) neuroplasticity changes were assessed using language network region of interest-based voxel-based morphometry (VBM) and quantitative anisotropy-based connectometry, and their associations to improved language outcomes (Western Aphasia Battery Naming and Repetition) were evaluated. Connectometry analyses showed that the singing group enhanced structural WM connectivity in the left arcuate fasciculus (AF) and corpus callosum as well as in the frontal aslant tract (FAT), superior longitudinal fasciculus, and corticostriatal tract bilaterally compared with the control group. Moreover, in VBM, the singing group showed GM volume increase in the left inferior frontal cortex (Brodmann area 44) compared with the control group. The neuroplasticity effects in the left BA44, AF, and FAT correlated with improved naming abilities after the intervention. These findings suggest that in the poststroke aphasia group, singing can bring about structural neuroplasticity changes in left frontal language areas and in bilateral language pathways, which underpin treatment-induced improvement in speech production.


Assuntos
Afasia , Plasticidade Neuronal , Canto , Humanos , Plasticidade Neuronal/fisiologia , Masculino , Feminino , Pessoa de Meia-Idade , Afasia/fisiopatologia , Afasia/terapia , Afasia/reabilitação , Afasia/patologia , Afasia/etiologia , Idoso , Canto/fisiologia , Substância Cinzenta/patologia , Substância Cinzenta/fisiopatologia , Substância Cinzenta/diagnóstico por imagem , Substância Branca/patologia , Substância Branca/diagnóstico por imagem , Substância Branca/fisiopatologia , Acidente Vascular Cerebral/fisiopatologia , Acidente Vascular Cerebral/terapia , Acidente Vascular Cerebral/complicações , Doença Crônica , Encéfalo/fisiopatologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Imageamento por Ressonância Magnética , Resultado do Tratamento
2.
bioRxiv ; 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37398447

RESUMO

Concurrent transcranial direct current stimulation (tDCS) and proton Magnetic Resonance Spectroscopy ( 1 H MRS) experiments have shown up- or downregulation of neurotransmitter concentration. However, effects have been modest applying mostly lower current doses and not all studies found significant effects. Dose of stimulation might be an important variable in eliciting a consistent response. To investigate dose effects of tDCS on neurometabolites, we placed an electrode over the left supraorbital region (with a return electrode over the right mastoid bone) and utilized an MRS voxel (3x3x3cm) that was centered over the anterior cingulate/inferior mesial prefrontal region which is in the path of the current distribution. We conducted 5 epochs of acquisition, each one with a 9:18min acquisition time, and applied tDCS in the third epoch. We observed significant dose and polarity dependent modulation of GABA and to a lesser degree of Glutamine/Glutamate (GLX) with the highest and reliable changes seen with the highest current dose, 5mA (current density 0.39 mA/cm 2 ), during and after the stimulation epoch compared with pre-stimulation baselines. The strong effect on GABA concentration (achieving a mean change of 63% from baseline, more than twice as much as reported with lower doses of stimulation) establishes tDCS-dose as an important parameter in eliciting a regional brain engagement and response. Furthermore, our experimental design in examining tDCS parameters and effects using shorter epochs of acquisitions might constitute a framework to explore the tDCS parameter space further and establish measures of regional engagement by non-invasive brain-stimulation.

3.
bioRxiv ; 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37398497

RESUMO

Non-invasive transcranial direct current stimulation (tDCS) can modulate activity of targeted brain regions. Whether tDCS can reliably and repeatedly modulate intrinsic connectivity of entire brain networks is unclear. We used concurrent tDCS-MRI to investigate the effect of high dose anodal tDCS on resting state connectivity within the Arcuate Fasciculus (AF) network, which spans the temporal, parietal, and frontal lobes and is connected via a structural backbone, the Arcuate Fasciculus (AF) white matter tract. Effects of high-dose tDCS (4mA) delivered via a single electrode placed over one of the AF nodes (single electrode stimulation, SE-S) was compared to the same dose split between multiple electrodes placed over AF-network nodes (multielectrode network stimulation, ME-NETS). While both SE-S and ME-NETS significantly modulated connectivity between AF network nodes (increasing connectivity during stimulation epochs), ME-NETS had a significantly larger and more reliable effect than SE-S. Moreover, comparison with a control network, the Inferior Longitudinal Fasciculus (ILF) network suggested that the effect of ME-NETS on connectivity was specific to the targeted AF-network. This finding was further supported by the results of a seed-to-voxel analysis wherein we found ME-NETS primarily modulated connectivity between AF-network nodes. Finally, an exploratory analysis looking at dynamic connectivity using sliding window correlation found strong and immediate modulation of connectivity during three stimulation epochs within the same imaging session.

4.
PLoS Comput Biol ; 19(4): e1011012, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37043484

RESUMO

Transcranial direct current stimulation (tDCS) can noninvasively modulate behavior, cognition, and physiologic brain functions depending on polarity and dose of stimulation as well as montage of electrodes. Concurrent tDCS-fMRI presents a novel way to explore the parameter space of non-invasive brain stimulation and to inform the experimenter as well as the participant if a targeted brain region or a network of spatially separate brain regions has been engaged and modulated. We compared a multi-electrode (ME) with a single electrode (SE) montage and both active conditions with a no-stimulation (NS) control condition to assess the engagement of a brain network and the ability of different electrode montages to modulate network activity. The multi-electrode montage targeted nodal regions of the right Arcuate Fasciculus Network (AFN) with anodal electrodes placed over the skull position of the posterior superior temporal/middle temporal gyrus (STG/MTG), supramarginal gyrus (SMG), posterior inferior frontal gyrus (IFG) and a return cathodal electrode over the left supraorbital region. In comparison, the single electrode montage used only one anodal electrode over a nodal brain region of the AFN, but varied the location between STG/MTG, SMG, and posterior IFG for different participants. Whole-brain rs-fMRI was obtained approximately every three seconds. The tDCS-stimulator was turned on at 3 minutes after the scanning started. A 4D rs-fMRI data set was converted to dynamic functional connectivity (DFC) matrices using a set of ROI pairs belonging to the AFN as well as other unrelated brain networks. In this study, we evaluated the performance of five algorithms to classify the DFC matrices from the three conditions (ME, SE, NS) into three different categories. The highest accuracy of 0.92 was obtained for the classification of the ME condition using the K Nearest Neighbor (KNN) algorithm. In other words, applying the classification algorithm allowed us to identify the engagement of the AFN and the ME condition was the best montage to achieve such an engagement. The top 5 ROI pairs that made a major contribution to the classification of participant's rs-fMRI data were identified using model performance parameters; ROI pairs were mainly located within the right AFN. This proof-of-concept study using a classification algorithm approach can be expanded to create a near real-time feedback system at a participant level to detect the engagement and modulation of a brain network that spans multiple brain lobes.


Assuntos
Estimulação Transcraniana por Corrente Contínua , Humanos , Imageamento por Ressonância Magnética , Encéfalo/fisiologia , Córtex Pré-Frontal/fisiologia , Eletrodos
5.
Commun Biol ; 6(1): 354, 2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-37002267

RESUMO

Ischemic cerebrovascular events often lead to aphasia. Previous work provided hints that such strokes may affect women and men in distinct ways. Women tend to suffer strokes with more disabling language impairment, even if the lesion size is comparable to men. In 1401 patients, we isolate data-led representations of anatomical lesion patterns and hand-tailor a Bayesian analytical solution to carefully model the degree of sex divergence in predicting language outcomes ~3 months after stroke. We locate lesion-outcome effects in the left-dominant language network that highlight the ventral pathway as a core lesion focus across different tests of language performance. We provide detailed evidence for sex-specific brain-behavior associations in the domain-general networks associated with cortico-subcortical pathways, with unique contributions of the fornix in women and cingular fiber bundles in men. Our collective findings suggest diverging white matter substrates in how stroke causes language deficits in women and men. Clinically acknowledging such sex disparities has the potential to improve personalized treatment for stroke patients worldwide.


Assuntos
Afasia , Acidente Vascular Cerebral , Substância Branca , Masculino , Humanos , Feminino , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Teorema de Bayes , Afasia/complicações , Afasia/patologia , Viés
6.
Neuropsychologia ; 183: 108540, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-36913989

RESUMO

BACKGROUND: Acquired prosopagnosia is often associated with other deficits such as dyschromatopsia and topographagnosia, from damage to adjacent perceptual networks. A recent study showed that some subjects with developmental prosopagnosia also have congenital amusia, but problems with music perception have not been described with the acquired variant. OBJECTIVE: Our goal was to determine if music perception was also impaired in subjects with acquired prosopagnosia, and if so, its anatomic correlate. METHOD: We studied eight subjects with acquired prosopagnosia, all of whom had extensive neuropsychological and neuroimaging testing. They performed a battery of tests evaluating pitch and rhythm processing, including the Montréal Battery for the Evaluation of Amusia. RESULTS: At the group level, subjects with anterior temporal lesions were impaired in pitch perception relative to the control group, but not those with occipitotemporal lesions. Three of eight subjects with acquired prosopagnosia had impaired musical pitch perception while rhythm perception was spared. Two of the three also showed reduced musical memory. These three reported alterations in their emotional experience of music: one reported music anhedonia and aversion, while the remaining two had changes consistent with musicophilia. The lesions of these three subjects affected the right or bilateral temporal poles as well as the right amygdala and insula. None of the three prosopagnosic subjects with lesions limited to the inferior occipitotemporal cortex exhibited impaired pitch perception or musical memory, or reported changes in music appreciation. CONCLUSION: Together with the results of our previous studies of voice recognition, these findings indicate an anterior ventral syndrome that can include the amnestic variant of prosopagnosia, phonagnosia, and various alterations in music perception, including acquired amusia, reduced musical memory, and subjective reports of altered emotional experience of music.


Assuntos
Transtornos da Percepção Auditiva , Música , Prosopagnosia , Humanos , Prosopagnosia/psicologia , Lobo Temporal/patologia , Transtornos da Percepção Auditiva/diagnóstico por imagem , Transtornos da Percepção Auditiva/etiologia , Percepção , Percepção da Altura Sonora
7.
Brain Commun ; 5(1): fcac337, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36687394

RESUMO

The ability to produce words through singing can be preserved in severe aphasia, but the benefits of group-based singing rehabilitation in aphasia are largely unknown. Our aim was to determine the efficacy of a multicomponent singing intervention on communication and speech production, emotional-social functioning and caregiver well-being in aphasia. Fifty-four patients with acquired brain injury and chronic aphasia and their family caregivers (n = 43) were recruited. Using a crossover randomized controlled trial design, participants were randomized to two groups who received a 4-month singing intervention either during the first or second half of the study in addition to standard care. The intervention comprised weekly group-based training (including choir singing and group-level melodic intonation therapy) and tablet-assisted singing training at home. At baseline, 5- and 9-month stages, patients were assessed with tests and questionnaires on communication and speech production, mood, social functioning, and quality of life and family caregivers with questionnaires on caregiver burden. All participants who participated in the baseline measurement (n = 50) were included in linear mixed model analyses. Compared with standard care, the singing intervention improved everyday communication and responsive speech production from baseline to 5-month stage, and these changes were sustained also longitudinally (baseline to 9-month stage). Additionally, the intervention enhanced patients' social participation and reduced caregiver burden. This study provides novel evidence that group-based multicomponent singing training can enhance communication and spoken language production in chronic aphasia as well as improve psychosocial wellbeing in patients and caregivers. https://www.clinicaltrials.gov, Unique identifier: NCT03501797.

8.
Ann N Y Acad Sci ; 1519(1): 173-185, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36349876

RESUMO

Patients with large left-hemisphere lesions and post-stroke aphasia often remain nonfluent. Melodic intonation therapy (MIT) may be an effective alternative to traditional speech therapy for facilitating recovery of fluency in those patients. In an open-label, proof-of-concept study, 14 subjects with nonfluent aphasia with large left-hemisphere lesions (171 ± 76 cc) underwent two speech/language assessments before, one at the midpoint, and two after the end of 75 sessions (1.5 h/session) of MIT. Functional MR imaging was done before and after therapy asking subjects to vocalize the same set of 10 bi-syllabic words. We found significant improvements in speech output after a period of intensive MIT (75 sessions for a total of 112.5 h) compared to two pre-therapy assessments. Therapy-induced gains were maintained 4 weeks post-treatment. Imaging changes were seen in a right-hemisphere network that included the posterior superior temporal and inferior frontal gyri, inferior pre- and postcentral gyri, pre-supplementary motor area, and supramarginal gyrus. Functional changes in the posterior right inferior frontal gyri significantly correlated with changes in a measure of fluency. Intense training of intonation-supported auditory-motor coupling and engaging feedforward/feedback control regions in the unaffected hemisphere improves speech-motor functions in subjects with nonfluent aphasia and large left-hemisphere lesions.


Assuntos
Afasia de Broca , Fonoterapia , Humanos , Afasia de Broca/terapia , Afasia de Broca/patologia , Fonoterapia/métodos , Imageamento por Ressonância Magnética , Fala , Córtex Pré-Frontal
9.
Ann N Y Acad Sci ; 1518(1): 12-24, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36177875

RESUMO

Major advances in music neuroscience have fueled a growing interest in music-based neurological rehabilitation among researchers and clinicians. Musical activities are excellently suited to be adapted for clinical practice because of their multisensory nature, their demands on cognitive, language, and motor functions, and music's ability to induce emotions and regulate mood. However, the overall quality of music-based rehabilitation research remains low to moderate for most populations and outcomes. In this consensus article, expert panelists who participated in the Neuroscience and Music VII conference in June 2021 address methodological challenges relevant to music-based rehabilitation research. The article aims to provide guidance on challenges related to treatment, outcomes, research designs, and implementation in music-based rehabilitation research. The article addresses how to define music-based rehabilitation, select appropriate control interventions and outcomes, incorporate technology, and consider individual differences, among other challenges. The article highlights the value of the framework for the development and evaluation of complex interventions for music-based rehabilitation research and the need for stronger methodological rigor to allow the widespread implementation of music-based rehabilitation into regular clinical practice.


Assuntos
Musicoterapia , Música , Reabilitação Neurológica , Humanos , Música/psicologia , Consenso , Emoções
10.
Sci Rep ; 12(1): 9607, 2022 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-35689084

RESUMO

Dysphagia is a serious stroke complication but lacks effective therapy. We investigated safety and preliminary efficacy of anodal transcranial direct current stimulation (atDCS) paired with swallowing exercises in improving post-stroke dysphagia from an acute unilateral hemispheric infarction (UHI). We conducted a double-blind, early phase-2 randomized controlled trial, in subjects (n = 42) with moderate-severe dysphagia [Penetration and Aspiration Scale (PAS) score ≥ 4], from an acute-subacute UHI. Subjects were randomized to Low-Dose, High-Dose atDCS or Sham stimulation for 5 consecutive days. Primary safety outcomes were incidence of seizures, neurological, motor, or swallowing function deterioration. Primary efficacy outcome was a change in PAS scores at day-5 of intervention. Main secondary outcome was dietary improvement at 1-month, assessed by Functional Oral Intake (FOIS) score. No differences in pre-defined safety outcomes or adjusted mean changes in PAS, FOIS scores, between groups, were observed. Post-hoc analysis demonstrated that 22 /24 subjects in the combined atDCS group had a clinically meaningful dietary improvement (FOIS score ≥ 5) compared to 8 /14 in Sham (p = 0.037, Fisher-exact). atDCS application in the acute-subacute stroke phase is safe but did not decrease risk of aspiration in this early phase trial. The observed dietary improvement is promising and merits further investigation.


Assuntos
Transtornos de Deglutição , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Estimulação Transcraniana por Corrente Contínua , Encéfalo , Transtornos de Deglutição/etiologia , Transtornos de Deglutição/terapia , Humanos , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/terapia , Estimulação Transcraniana por Corrente Contínua/efeitos adversos , Resultado do Tratamento
11.
Ann N Y Acad Sci ; 1515(1): 266-275, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35754007

RESUMO

We tested an intonation-based speech treatment for minimally verbal children with autism (auditory-motor mapping training, AMMT) against a nonintonation-based control treatment (speech repetition therapy, SRT). AMMT involves singing, rather than speaking, two-syllable words or phrases. In time with each sung syllable, therapist and child tap together on electronic drums tuned to the same pitches, thus coactivating shared auditory and motor neural representations of manual and vocal actions, and mimicking the "babbling and banging" stage of typical development. Fourteen children (three females), aged 5.0-10.8, with a mean Autism Diagnostic Observation Schedule-2 score of 22.9 (SD = 2.5) and a mean Kaufman Speech Praxis Test raw score of 12.9 (SD = 13.0) participated in this trial. The main outcome measure was percent syllables approximately correct. Four weeks post-treatment, AMMT resulted in a mean improvement of +12.1 (SE = 3.8) percentage points, compared to +2.8 (SE = 5.7) percentage points for SRT. This between-group difference was associated with a large effect size (Cohen's d = 0.82). Results suggest that simultaneous intonation and bimanual movements presented in a socially engaging milieu are effective factors in AMMT and can create an individualized, interactive music-making environment for spoken-language learning in minimally verbal children with autism.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Música , Transtorno do Espectro Autista/terapia , Transtorno Autístico/complicações , Transtorno Autístico/terapia , Criança , Pré-Escolar , Feminino , Humanos , Idioma , Masculino , Fala
12.
Brain Commun ; 4(1): fcac001, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35174327

RESUMO

A classical observation in neurology is that aphasic stroke patients with impairments in speech production can nonetheless sing the same utterances. This preserved ability suggests a distinctive neural architecture for singing that could contribute to speech recovery. However, to date, these structural correlates remain unknown. Here, we combined a multivariate lesion-symptom mapping and voxel-based morphometry approach to analyse the relationship between lesion patterns and grey matter volume and production rate in speech and singing tasks. Lesion patterns for spontaneous speech and cued repetition extended into frontal, temporal and parietal areas typically reported within the speech production network. Impairment in spontaneous singing was associated with damage to the left anterior-posterior superior and middle temporal gyri. Preservation of grey matter volume in the same regions where damage led to poor speech and singing production supported better performance in these tasks. When dividing the patients into fluent and dysfluent singers based on the singing performance from demographically matched controls, we found that the preservation of the left middle temporal gyrus was related to better spontaneous singing. These findings provide insights into the structural correlates of singing in chronic aphasia and may serve as biomarkers to predict treatment response in clinical trials using singing-based interventions for speech rehabilitation.

13.
Front Neurol ; 13: 1043695, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36588908

RESUMO

Mitochondrial encephalomyopathy, lactic acidosis, stroke-like episodes, and other features (short stature, headaches, seizures, and sensorineural hearing loss) constitute characteristics of MELAS syndrome. MELAS is a rare condition due to mutations in maternally inherited mitochondrial DNA with levels of heteroplasmy possibly related to late adulthood presentation. A previously reported MELAS case coexisted with presumed Antiphospholipid Antibody Syndrome (APLAS), but the connection between MELAS and a potential APLAS is unclear. A 29-year-old woman presented with mild right-sided sensorimotor symptoms and mixed aphasia in November 2021. She presented again in May 2022 for unrelenting headaches and was found to have a new right hemisphere syndrome with mild left-sided sensorimotor symptoms, hemineglect, and anosognosia. Characteristic lab and imaging studies were obtained. During the first presentation (October 2021), the discovery of anticardiolipin IgM antibodies (aCL) (and their replication 3 months later) led to a diagnosis of APLAS, and Warfarin was initiated. During the second admission (May 2022), a new stroke-like lesion on the right hemisphere with characteristic features not suggestive of ischemia was detected, which led to a diagnosis of MELAS (m3243A > G mutation). Although MELAS and APLAS could co-exist, alternatively, it is possible that antiphospholipid antibodies might be generated when the strongly anionic Cardiolipin-Hydroperoxide from the inner mitochondrial membrane is exposed to immune component cells upon cell lysis. Thus, the presence of aCL in patients with stroke-like lesions might masquerade as an APLAS, but should probably be questioned if only aCL are repeatedly found and imaging findings are not characteristic for ischemic lesions.

14.
Ann Clin Transl Neurol ; 8(9): 1796-1808, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34351075

RESUMO

OBJECTIVE: Using multimodal imaging, we tested the hypothesis that patients after hemispherotomy recruit non-primary motor areas and non-pyramidal descending motor fibers to restore motor function of the impaired limb. METHODS: Functional and structural MRI data were acquired in a group of 25 patients who had undergone hemispherotomy and in a matched group of healthy controls. Patients' motor impairment was measured using the Fugl-Meyer Motor Assessment. Cortical areas governing upper extremity motor-control were identified by task-based functional MRI. The resulting areas were used as nodes for functional and structural connectivity analyses. RESULTS: In hemispherotomy patients, movement of the impaired upper extremity was associated to widespread activation of non-primary premotor areas, whereas movement of the unimpaired one and of the control group related to activations prevalently located in the primary motor cortex (all p ≤ 0.05, FWE-corrected). Non-pyramidal tracts originating in premotor/supplementary motor areas and descending through the pontine tegmentum showed relatively higher structural connectivity in patients (p < 0.001, FWE-corrected). Significant correlations between structural connectivity and motor impairment were found for non-pyramidal (p = 0.023, FWE-corrected), but not for pyramidal connections. INTERPRETATION: A premotor/supplementary motor network and non-pyramidal fibers seem to mediate motor function in patients after hemispherotomy. In case of hemispheric lesion, the homologous regions in the contralesional hemisphere may not compensate the resulting motor deficit, but the functionally redundant premotor network.


Assuntos
Conectoma , Epilepsia Resistente a Medicamentos/cirurgia , Hemisferectomia , Córtex Motor/fisiopatologia , Rede Nervosa/fisiopatologia , Extremidade Superior/fisiopatologia , Adolescente , Adulto , Criança , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Córtex Motor/diagnóstico por imagem , Rede Nervosa/diagnóstico por imagem , Vias Neurais/diagnóstico por imagem , Vias Neurais/fisiopatologia , Adulto Jovem
15.
Neuroimage ; 237: 118144, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-33991697

RESUMO

We used three dose levels (Sham, 2 mA, and 4 mA) and two different electrode montages (unihemispheric and bihemispheric) to examine DOSE and MONTAGE effects on regional cerebral blood flow (rCBF) as a surrogate marker of neural activity, and on a finger sequence task, as a surrogate behavioral measure drawing on brain regions targeted by transcranial direct current stimulation (tDCS). We placed the anodal electrode over the right motor region (C4) while the cathodal or return electrode was placed either over a left supraorbital region (unihemispheric montage) or over the left motor region (C3 in the bihemispheric montage). Performance changes in the finger sequence task for both hands (left hand: p = 0.0026, and right hand: p = 0.0002) showed a linear tDCS dose response but no montage effect. rCBF in the right hemispheric perirolandic area increased with dose under the anodal electrode (p = 0.027). In contrast, in the perirolandic ROI in the left hemisphere, rCBF showed a trend to increase with dose (p = 0.053) and a significant effect of montage (p = 0.00004). The bihemispheric montage showed additional rCBF increases in frontomesial regions in the 4mA condition but not in the 2 mA condition. Furthermore, we found strong correlations between simulated current density in the left and right perirolandic region and improvements in the finger sequence task performance (FSP) for the contralateral hand. Our data support not only a strong direct tDCS dose effect for rCBF and FSP as surrogate measures of targeted brain regions but also indirect effects on rCBF in functionally connected regions (e.g., frontomesial regions), particularly in the higher dose condition and on FSP of the ipsilateral hand (to the anodal electrode). At a higher dose and irrespective of polarity, a wider network of sensorimotor regions is positively affected by tDCS.


Assuntos
Circulação Cerebrovascular/fisiologia , Atividade Motora/fisiologia , Rede Nervosa/fisiologia , Córtex Sensório-Motor/fisiologia , Estimulação Transcraniana por Corrente Contínua , Adulto , Feminino , Dedos , Humanos , Imageamento por Ressonância Magnética , Masculino , Marcadores de Spin , Estimulação Transcraniana por Corrente Contínua/métodos
16.
Am J Speech Lang Pathol ; 30(3S): 1542-1557, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-33852328

RESUMO

Purpose Understanding what limits speech development in minimally verbal (MV) children with autism spectrum disorder (ASD) is important for providing highly effective targeted therapies. This preliminary investigation explores the extent to which developmental speech deficits predicted by Directions Into Velocities of Articulators (DIVA), a computational model of speech production, exemplify real phenotypes. Method Implementing a motor speech disorder in DIVA predicted that speech would become highly variable within and between tokens, while implementing a motor speech plus an auditory processing disorder predicted that DIVA's speech would become highly centralized (schwa-like). Acoustic analyses of DIVA's output predicted that acoustically measured phoneme distortion would be similar between the two cases, but that in the former case, speech would show more within- and between-token variability than in the latter case. We tested these predictions quantitatively on the speech of children with MV ASD. In Study 1, we tested the qualitative predictions using perceptual analysis methods. Speech pathologists blinded to the purpose of the study tallied the signs of childhood apraxia of speech that appeared in the speech of 38 MV children with ASD. K-means clustering was used to create two clusters from the group of 38, and analysis of variance was used to determine whether the clusters differed according to perceptual features corresponding to within- and between-token variability. In Study 2, we employed acoustic analyses on the speech of the child from each cluster who produced the largest number of analyzable tokens to test the predictions of differences in within-token variability, between-token variability, and vowel space area. Results Clusters produced by k-means analysis differed by perceptual features that corresponded to within-token variability. Nonsignificant differences between clusters were found for features corresponding to between-token variability. Subsequent acoustic analyses of the selected cases revealed that the speech of the child from the high-variability cluster showed significantly more quantitative within- and between-token variability than the speech of the child from the low-variability cluster. The vowel space of the child from the low-variability cluster was more centralized than that of typical children and that of the child from the high-variability cluster. Conclusions Results provide preliminary evidence that subphenotypes of children with MV ASD may exist, characterized by (a) comorbid motor speech disorder and (b) comorbid motor speech plus auditory processing disorder. The results motivate testable predictions about how these comorbidities affect speech. Supplemental Material https://doi.org/10.23641/asha.14384432.


Assuntos
Apraxias , Transtorno do Espectro Autista , Transtornos do Desenvolvimento da Linguagem , Transtorno do Espectro Autista/complicações , Transtorno do Espectro Autista/diagnóstico , Criança , Humanos , Transtornos do Desenvolvimento da Linguagem/diagnóstico , Transtornos do Desenvolvimento da Linguagem/terapia , Fala , Distúrbios da Fala/diagnóstico , Distúrbios da Fala/terapia
17.
Neuroreport ; 32(8): 702-710, 2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-33852539

RESUMO

Previous studies have shown that transcranial direct current stimulation (tDCS) can affect performance by decreasing regional excitability in a brain region that contributes to the task of interest. To our knowledge, no research to date has found both enhancing and diminishing effects on performance, depending upon which polarity of the current is applied. The supramarginal gyrus (SMG) is an ideal brain region for testing tDCS effects because it is easy to identify using the 10-20 electroencephalography coordinate system, and results of neuroimaging studies have implicated the left SMG in short-term memory for phonological and nonphonological sounds. In the present study, we found that applying tDCS to the left SMG affected pitch memory in a manner that depended upon the polarity of stimulation: cathodal tDCS had a negative impact on performance whereas anodal tDCS had a positive impact. These effects were significantly different from sham stimulation, which did not influence performance; they were also specific to the left hemisphere - no effect was found when applying cathodal stimulation to the right SMG - and were unique to pitch memory as opposed to memory for visual shapes. Our results provide further evidence that the left SMG is a nodal point for short-term auditory storage and demonstrate the potential of tDCS to influence cognitive performance and to causally examine hypotheses derived from neuroimaging studies.


Assuntos
Percepção Auditiva/fisiologia , Memória de Curto Prazo/fisiologia , Lobo Parietal/fisiologia , Adulto , Feminino , Humanos , Masculino , Estimulação Transcraniana por Corrente Contínua , Adulto Jovem
18.
Cortex ; 135: 285-297, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33421728

RESUMO

Absolute pitch (AP) refers to the ability of identifying the pitch of a given tone without reliance on any reference pitch. The downside of possessing AP may be the experience of disturbance when exposed to out-of-tune tones. Here, we investigated this so-far unexplored phenomenon in AP, which we refer to as auditory aversion. Electroencephalography (EEG) was recorded in a sample of AP possessors and matched control musicians without AP while letting them perform a task underlying a so-called affective priming paradigm: Participants judged valenced pictures preceded by musical primes as quickly and accurately as possible. The primes were bimodal, presented as tones in combination with visual notations that either matched or mismatched the actually presented tone. Both samples performed better in judging unpleasant pictures over pleasant ones. In comparison with the control musicians, the AP possessors revealed a more profound discrepancy between the two valence conditions, and their EEG revealed later peaks at around 200 ms (P200) after prime onset. Their performance dropped when responding to pleasant pictures preceded by incongruent primes, especially when mistuned by one semitone. This interference was also reflected in an EEG deflection at around 400 ms (N400) after picture onset, preceding the behavior responses. These findings suggest that AP possessors process mistuned musical stimuli and pleasant pictures as affectively unrelated with each other, supporting an aversion towards out-of-tune tones in AP possessors. The longer prime-related P200 latencies exhibited by AP possessors suggest a delay in integrating musical stimuli, underlying an altered affinity towards pitch-label associations.


Assuntos
Eletroencefalografia , Música , Estimulação Acústica , Afeto , Potenciais Evocados , Feminino , Humanos , Masculino , Percepção da Altura Sonora
19.
Front Neurosci ; 14: 554731, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33132820

RESUMO

Attention and working memory (WM) are core components of executive functions, and they can be enhanced by training. One activity that has shown to improve executive functions is musical training, but the brain networks underlying these improvements are not well known. We aimed to identify, using functional MRI (fMRI), these networks in children who regularly learn and play a musical instrument. Girls and boys aged 10-13 with and without musical training completed an attention and WM task while their brain activity was measured with fMRI. Participants were presented with a pair of bimodal stimuli (auditory and visual) and were asked to pay attention only to the auditory, only to the visual, or to both at the same time. The stimuli were afterward tested with a memory task in order to confirm attention allocation. Both groups had higher accuracy on items that they were instructed to attend, but musicians had an overall better performance on both memory tasks across attention conditions. In line with this, musicians showed higher activation than controls in cognitive control regions such as the fronto-parietal control network during all encoding phases. In addition, facilitated encoding of auditory stimuli in musicians was positively correlated with years of training and higher activity in the left inferior frontal gyrus and the left supramarginal gyrus, structures that support the phonological loop. Taken together, our results elucidate the neural dynamics that underlie improved bimodal attention and WM of musically trained children and contribute new knowledge to this model of brain plasticity.

20.
J Commun Disord ; 87: 106033, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32877838

RESUMO

PURPOSE: To investigate the latent factors underlying signs of childhood apraxia of speech (CAS) in a group of 57 children with CAS. METHOD: The speech of 57 children with CAS (aged 3;5-17;0) was coded for signs of CAS. All participants showed at least five signs of CAS and were judged to have CAS by speech pathologists experienced in pediatric speech disorders. Participants were selected to represent a range of severity of CAS: 30 children were verbal and 27 were minimally verbal with comorbid autism. Participants' scores for each sign (the number of times that sign appeared during a child's speech sample) were converted to z-scores, then entered as variables into an exploratory factor analysis. Models were compared using the Akaike Information Criterion (AIC). RESULTS: The three-factor model had the lowest AIC and best fit the data. After oblique rotation, syllable segmentation, slow rate, and stress errors loaded most highly on Factor 1. Groping, addition of phonemes other than schwa, and difficulty with coarticulation loaded most highly on Factor 2. Variable errors loaded most highly on Factor 3. Thus, factors were interpreted as being associated with (1) prosody, (2) coarticulation, and (3) inconsistency. CONCLUSIONS: Results are consistent with the three consensus criteria for CAS from the American Speech-Language-Hearing Association: Inappropriate prosody, disrupted coarticulatory transitions, and inconsistent errors on repeated tokens. High loading of the syllable segmentation sign on the inappropriate prosody factor also supports the use of a pause-related biomarker for CAS.


Assuntos
Apraxias , Distúrbios da Fala , Patologia da Fala e Linguagem , Adolescente , Apraxias/diagnóstico , Criança , Pré-Escolar , Análise Fatorial , Humanos , Fala , Distúrbios da Fala/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...