Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Protein Eng Des Sel ; 26(3): 225-42, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23223941

RESUMO

The twin-arginine translocation (TAT) pathway of the bacterial cytoplasmic membrane mediates translocation only of proteins that accomplished a native-like conformation. We deploy this feature in modular selection systems for directed evolution, in which folding helpers as well as dimeric or oligomeric protein-protein interactions enable TAT-dependent translocation of the resistance marker TEM ß-lactamase (ßL). Specifically, we demonstrate and analyze selection of (i) enhancers for folding by direct TAT translocation selection of a target protein interposed between the TorA signal sequence and ßL, (ii) dimeric or oligomeric protein-protein interactions by hitchhiker translocation (HiT) selection of proteins fused to the TorA signal sequence and to the ßL, respectively and (iii) heterotrimeric protein-protein interactions by combining HiT with protein fragment complementation selection of proteins fused to two split ßL fragments and TorA, respectively. The lactamase fragments were additionally engineered for improved activity and stability. Applicability was benchmarked with interaction partners of known affinity and multimerization whereby cellular fitness correlated well with biophysical protein properties. Ultimately, the HiT selection was employed to identify peptides, which specifically bind to leukemia- and melanoma-relevant target proteins (MITF and ETO) by coiled-coil or tetra-helix-bundle formation with high affinity. The various versions of TAT selection led to inhibiting peptides (iPEPs) of disease-promoting interactions and enabled so far difficult to achieve selections.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Engenharia de Proteínas/métodos , Mapeamento de Interação de Proteínas , beta-Lactamases/metabolismo , Arginina/genética , Arginina/metabolismo , Clonagem Molecular/métodos , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Modelos Moleculares , Dobramento de Proteína , Multimerização Proteica , Transporte Proteico , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , beta-Lactamases/química , beta-Lactamases/genética
2.
PLoS One ; 6(10): e26327, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22039461

RESUMO

GlnK proteins regulate the active uptake of ammonium by Amt transport proteins by inserting their regulatory T-loops into the transport channels of the Amt trimer and physically blocking substrate passage. They sense the cellular nitrogen status through 2-oxoglutarate, and the energy level of the cell by binding both ATP and ADP with different affinities. The hyperthermophilic euryarchaeon Archaeoglobus fulgidus possesses three Amt proteins, each encoded in an operon with a GlnK ortholog. One of these proteins, GlnK2 was recently found to be incapable of binding 2-OG, and in order to understand the implications of this finding we conducted a detailed structural and functional analysis of a second GlnK protein from A. fulgidus, GlnK3. Contrary to Af-GlnK2 this protein was able to bind both ATP/2-OG and ADP to yield inactive and functional states, respectively. Due to the thermostable nature of the protein we could observe the exact positioning of the notoriously flexible T-loops and explain the binding behavior of GlnK proteins to their interaction partner, the Amt proteins. A thermodynamic analysis of these binding events using microcalorimetry evaluated by microstate modeling revealed significant differences in binding cooperativity compared to other characterized P(II) proteins, underlining the diversity and adaptability of this class of regulatory signaling proteins.


Assuntos
Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas Arqueais/metabolismo , Ácidos Cetoglutáricos/metabolismo , Proteínas Arqueais/química , Archaeoglobus fulgidus/metabolismo , Sequência de Bases , Primers do DNA , Modelos Moleculares , Reação em Cadeia da Polimerase , Conformação Proteica
3.
Res Microbiol ; 162(3): 285-91, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21288482

RESUMO

Gram-positive soil bacteria Arthrobacter nicotinovorans, Nocardioides sp. JS614 and Rhodococcus opacus were shown to contain similarly organized clusters of homologous genes for nicotine catabolism. An uncharacterized gene of a predicted nitrilase within these gene clusters was cloned from A. nicotinovorans and biochemical data unexpectedly showed that the protein exhibited ω-amidase activity toward α-ketoglutaramate. Structural modelling of the protein suggested the presence of the catalytic triad Cys-Glu-Lys, characteristic of this class of enzymes, and supported α-ketoglutaramate as substrate. A-ketoglutaramate could be generated by hydrolytic cleavage of the C-N bond of the trihydroxypyridine ring produced by nicotine catabolism in these bacteria. This ω-amidase, together with glutamate dehydrogenase, may form a physiologically relevant enzyme couple, leading to transformation of metabolically inert α-ketoglutaramate derived from trihydroxypyridine into glutamate, a central compound of nitrogen metabolism.


Assuntos
Actinomycetales/genética , Amidoidrolases/genética , Arthrobacter/genética , Ácidos Cetoglutáricos/metabolismo , Redes e Vias Metabólicas/genética , Nicotina/metabolismo , Rhodococcus/genética , Actinomycetales/metabolismo , Amidoidrolases/metabolismo , Arthrobacter/metabolismo , Domínio Catalítico , Ordem dos Genes , Modelos Moleculares , Família Multigênica , Estrutura Terciária de Proteína , Rhodococcus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...