Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 89(7): 073109, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30068109

RESUMO

We present a system level description of a cavity-enhanced millimeter-wave spectrometer that is the first in its class to combine source and detection electronics constructed from architectures commonly deployed in the mobile phone industry and traditional pulsed Fourier transform techniques to realize a compact device capable of sensitive and specific in situ gas detections. The instrument, which has an operational bandwidth of 90-102 GHz, employs several unique components, including a custom-designed pair of millimeter-wave transmitter and heterodyne receiver integrated circuit chips constructed with 65 nm complementary metal-oxide semiconductor (CMOS) techniques. These elements are directly mated to a hybrid coupling structure that enables free-space interaction of the electronics with a small gas volume while also acting as a cavity end mirror. Instrument performance for sensing of volatile compounds is highlighted with experimental trials taken in bulk gas flows and seeded molecular beam environments.

2.
Earth Space Sci ; 4(8): 574-587, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-29104900

RESUMO

This paper describes a forward radiative transfer model and retrieval system (FMRS) for the Tropospheric Water and cloud ICE (TWICE) CubeSat instrument. We use the FMRS to simulate radiances for the TWICE's 14 millimeter- and submillimeter-wavelength channels for a tropical atmospheric state produced by a Weather Research and Forecasting model simulation. We also perform simultaneous retrievals of cloud ice particle size, ice water content (IWC), water vapor content (H2O), and temperature from the simulated TWICE radiances using the FMRS. We show that the TWICE instrument is capable of retrieving ice particle size in the range of ~50-1000 µm in mass mean effective diameter with approximately 50% uncertainty. The uncertainties of other retrievals from TWICE are about 1 K for temperature, 50% for IWC, and 20% for H2O.

3.
J Chem Phys ; 145(7): 074201, 2016 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-27544098

RESUMO

The extension of radio frequency complementary metal oxide semiconductor (CMOS) circuitry into millimeter wavelengths promises the extension of spectroscopic techniques in compact, power efficient systems. We are now beginning to use CMOS millimeter devices for low-mass, low-power instrumentation capable of remote or in situ detection of gas composition during space missions. We have chosen to develop a Flygare-Balle type spectrometer, with a semi-confocal Fabry-Perot cavity to amplify the pump power of a mm-wavelength CMOS transmitter that is directly coupled to the planar mirror of the cavity. We have built a pulsed transceiver system at 92-105 GHz inside a 3 cm base length cavity and demonstrated quality factor up to 4680, allowing for modes with 20 MHz bandwidth, with a sufficient cavity amplification factor for mW class transmitters. This work describes the initial gas measurements and outlines the challenges and next steps.

4.
Rev Sci Instrum ; 82(9): 093105, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21974571

RESUMO

We report the first demonstration of a continuous wave coherent source covering 2.48-2.75 THz, with greater than 10% instantaneous tuning bandwidth and having 1-14 µW of output power at room temperature. This source is based on a 91.8-101.8 GHz synthesizer followed by a power amplifier and three cascaded frequency triplers. It demonstrates for the first time that purely electronic solid-state sources can generate a useful amount of power in a region of the electromagnetic spectrum where lasers (solid state or gas) were previously the only available coherent sources. The bandwidth, agility, and operability of this THz source have enabled wideband, high resolution spectroscopic measurements of water, methanol, and carbon monoxide with a resolution and signal-to-noise ratio unmatched by any other existing system, providing new insight in the physics of these molecules. Furthermore, the power and optical beam quality are high enough to observe the Lamb-dip effect in water. The source frequency has an absolute accuracy better than 1 part in 10(12) and the spectrometer achieves sub-Doppler frequency resolution better than 1 part in 10(8). The harmonic purity is better than 25 dB. This source can serve as a coherent signal for absorption spectroscopy, a local oscillator for a variety of heterodyne systems and can be used as a method for precision control of more powerful but much less frequency agile quantum mechanical terahertz sources.

5.
Nano Lett ; 5(7): 1469-74, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16178259

RESUMO

We have demonstrated Schottky diodes using semiconducting single-walled nanotubes (s-SWNTs) with titanium Schottky and platinum Ohmic contacts for high-frequency applications. The diodes are fabricated using angled evaporation of dissimilar metal contacts over an s-SWNT. The devices demonstrate rectifying behavior with large reverse bias breakdown voltages of greater than -15 V. To decrease the series resistance, multiple SWNTs are grown in parallel in a single device, and the metallic tubes are burnt-out selectively. At low biases these diodes showed ideality factors in the range of 1.5 to 1.9. Modeling of these diodes as direct detectors at room temperature at 2.5 terahertz (THz) frequency indicates noise equivalent powers (NEP) potentially comparable to that of the state-of-the-art gallium arsenide solid-state Schottky diodes, in the range of 10(-13) W/ radical Hz.


Assuntos
Microeletrodos , Nanotecnologia/instrumentação , Nanotubos de Carbono/química , Nanotubos de Carbono/ultraestrutura , Platina/química , Semicondutores , Titânio/química , Impedância Elétrica , Eletroquímica/instrumentação , Eletroquímica/métodos , Desenho de Equipamento , Análise de Falha de Equipamento , Teste de Materiais , Nanotecnologia/métodos , Nanotubos de Carbono/análise , Ondas de Rádio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...