Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Ophthalmol ; 97(6): e871-e876, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30816625

RESUMO

PURPOSE: Retinal prosthetic devices have been developed to partially restore very low vision in legally blind patients with end-stage hereditary retinal dystrophies. Subretinal implants, unlike epiretinal implants, are not fixated by a tack. The aim of this study was to assess and analyse possible changes over time in the subretinal position of the RETINA IMPLANT Alpha IMS and Alpha AMS (ClinicalTrials.gov NCT01024803). METHODS: Imaging studies were performed on fundus photographs using GIMP (Version 2.8.14). Postoperative photographs of the implanted eye were scaled and aligned. Landmarks were chosen and distances between landmarks were measured to then calculate the displacement of the microchip using a transformation matrix for rotational and translational movements. Analyses were performed using MATLAB 8.6 (The MathWorks Inc., Natick, MA). RESULTS: Of the 27 datasets with the Alpha IMS device, 12 (44%) remained stable without displacement of the microchip relative to the optic disc and the major blood vessels, whereas in 15 (56%), displacement occurred. The mean ± SD displacement in those 15 eyes was 0.66 ± 0.35 mm (range, 0.24-1.67 mm). Of the eight datasets with the Alpha AMS device, 1 (13%) remained stable without displacement of the microchip relative to the optic disc and the major blood vessels, whereas in 7 (87%), displacement occurred. The mean ± SD displacement in those seven eyes was 0.66 ± 0.26 mm (range, 0.32-0.97 mm). Calculated from all eyes (including those in which no displacement occurred), the mean displacement was 0.36 mm in the IMS cohort, and 0.58 mm in the AMS cohort, however, the difference was not statistically significant (p = 0.17). CONCLUSIONS: We have shown that the position of the subretinal implant changes in the majority of the cases after implantation. While the overall mean displacement of the chip was not significantly different in either of the cohorts, the maximum displacement was smaller in the Alpha AMS cohort.


Assuntos
Eletrodos Implantados , Implantação de Prótese/métodos , Retina/cirurgia , Retinose Pigmentar/cirurgia , Acuidade Visual , Percepção Visual/fisiologia , Próteses Visuais , Seguimentos , Humanos , Retinose Pigmentar/fisiopatologia , Estudos Retrospectivos , Resultado do Tratamento
2.
Biomed Microdevices ; 19(1): 7, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28124761

RESUMO

Despite recent developments and new treatments in ophthalmology there is nothing available to cure retinal degenerations like Retinitis Pigmentosa (RP) yet. One of the most advanced approaches to treat people that have gone blind due to RP is to replace the function of the degenerated photoreceptors by a microelectronic neuroprosthetic device. Basically, this subretinal active implant transforms the incoming light into electric pulses to stimulate the remaining cells of the retina. The functional time of such devices is a crucial aspect. In this paper the laboratory and clinical reliability of the two active subretinal implants Alpha IMS and Alpha AMS is presented. Based on clinical data the median operating life of the Alpha AMS is estimated to be 3.3 years with a one-sided lower 75 % confidence level of 2.0 years. This data shows a significant improvement of the device lifetime compared to the previous device Alpha IMS which shows a median lifetime of 0.6 years with a lower confidence bound (75 %) of 0.5 years. The results are in good agreement with laboratory data from accelerated aging tests of the implant components, showing an estimated median lifetime for Alpha IMS components of 0.7 years compared to the improved lifetime of Alpha AMS of 4.7 years.


Assuntos
Laboratórios , Retina , Próteses Visuais , Ensaios Clínicos como Assunto , Humanos , Estimativa de Kaplan-Meier , Desenho de Prótese , Reprodutibilidade dos Testes
3.
Artigo em Inglês | MEDLINE | ID: mdl-23366018

RESUMO

Iridium is one of the main electrode materials for applications like neural stimulation. Iridium has a higher charge injection capacity when activated and transformed into AIROF (activated iridium oxide film) using specific electrical signals. Activation is not possible in stimulating devices, if they do not include the necessary circuitry for activation. We introduce a method for iridium electrode activation requiring minimum additional on-chip hardware. In the main part, the lifetime behavior of iridium electrodes is investigated. These results may be interesting for applications not including on-chip activation hardware, and also because activation has drawbacks such as worse mechanical properties and reproducibility of AIROF.


Assuntos
Irídio , Modelos Teóricos , Estimulação Elétrica/instrumentação , Estimulação Elétrica/métodos , Eletrodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...