Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Tissue Eng Part A ; 29(9-10): 282-291, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36792933

RESUMO

Tendon injuries and disease are resistant to surgical repair; thus, adjunct therapies are widely investigated, especially mesenchymal stromal cells (MSCs) and, more recently, their extracellular vesicles (MSCdEVs), for example, exosomes. Thought to act on resident and infiltrating immune cells, the role of MSCdEVs in paracrine signaling is of great interest. This study investigated how MSCdEVs differ from analogs derived from resident (tenocyte) populations (TdEV). As macrophages play a significant role in tendon maintenance and repair, macrophage signaling was compared by cytokine quantification using a multiplexed immunoassay and tenocyte migration by in vitro scratch-wound analysis. TdEV-treated macrophages decreased IL-1 and increased MIP-1 and CXCL8 expression. In addition, macrophage signaling favored collagen synthesis and tenocyte bioactivity, while reducing proangiogenic signaling when TdEVs were used in place of MSCdEVs. These in vitro data demonstrate a differential influence of exosomes on macrophage signaling, according to cell source, supporting that local cell-derived exosomes may preferentially drive healing by different means with possible different outcomes compared to MSCdEVs. Impact Statement Adipose-derived mesenchymal stromal cell (AdMSC) exosomes (EVs) can improve tendon mechanical resilience, tissue organization, and M2 macrophage phenotype predominance in response to tendon injury. This active area of investigation drives great interest in the function of these exosomes as adjunct therapies for tendon disease, particularly rotator cuff tendinopathy. However, little is known about the effects of EVs as a function of cell source, nor regarding their efficacy in preclinical translational ovine models. Herein we demonstrate a differential effect of exosomes as a function of cell source, tenocyte compared to AdMSCs, on macrophage signaling and tenocyte migration of ovine cells.


Assuntos
Exossomos , Vesículas Extracelulares , Traumatismos dos Tendões , Ovinos , Animais , Exossomos/metabolismo , Tenócitos/fisiologia , Tendões , Traumatismos dos Tendões/metabolismo , Macrófagos
2.
J Orthop Res ; 41(10): 2221-2231, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-36722700

RESUMO

The high failure rate of rotator cuff repair surgeries is positively correlated with age, yet the biomechanical changes to the tendons of the rotator cuff with age have not been described. As such, we sought to benchmark and characterize the biomechanical and histopathological properties with the accompanying gene expression of human rotator cuff tendons as a function of age and histopathological degeneration. All four rotator cuff tendons from fresh human cadaver shoulders underwent biomechanical, histopathological, and gene expression analyses. Following cadaver availability, samples were grouped into Younger (i.e., less than 36 years of age, n = 2 donors) and Aged (i.e., greater than 55 years of age, n = 3 donors) as a means of characterizing and quantifying the age-related changes exhibited by the tendons. Biomechanical testing and subsequent computational modeling techniques revealed both differences in properties between tendons and greater Young's moduli in the Younger tendons (supraspinatus 3.06x, infraspinatus 1.76x, subscapularis 1.25x, and teres minor 1.32x). Histopathological scoring using the semi-quantitative Bonar scoring scheme revealed a positive correlation with age across all tendons (r = 0.508, p < 0.001). These data contextualize the biomechanical and histopathological changes to tendons that occurs naturally with aging, highlighting the innate differences in biomechanical properties of all four rotator cuff tendons, as well as the difference in their degenerative trajectories. Additionally, the histopathological scoring revealed moderate signs of degeneration within the Younger supraspinatus tendons, suggesting tissue quality may decrease in this specific tendon in patients less than 40 years old, before clinical symptoms or tears.


Assuntos
Lesões do Manguito Rotador , Manguito Rotador , Humanos , Pré-Escolar , Adulto , Manguito Rotador/patologia , Lesões do Manguito Rotador/patologia , Fenômenos Biomecânicos , Envelhecimento , Cadáver
3.
Ann Transl Med ; 9(21): 1616, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34926660

RESUMO

BACKGROUND: Chronic degeneration of rotator cuff tendons is a major contributing factor to the unacceptably high prevalence of rotator cuff repair surgery failures. The etiology of chronic rotator cuff degeneration is not well understood, and current therapies are not effective, necessitating preclinical research to fill this knowledge gap. Unfortunately, current large animal models rely on enthesis disruption as a means of model generation, which is not representative of human patients with chronic rotator cuff degeneration prior to full-thickness tears. Following, the goal of this study was to develop and characterize a translational large-animal model of chronic rotator cuff degeneration without enthesis release. METHODS: A midsubstance damage model [i.e., "combed fenestration" (CF)] in adult sheep was generated by creating 16 longitudinal cuts within the top third of the infraspinatus tendon thickness. Tendon integrity was characterized through exhaustive non-destructive biomechanical stress relaxation testing [peak stress, peak load, percent relaxation, and cross-sectional area (CSA)], followed by histopathological degeneration scoring and analysis (Bonar score), histomorphological analysis of collagen organization and fatty atrophy (percent adipose area), and gene expression analyses. RESULTS: The CF model tendons exhibited significantly decreased mechanical properties as evidenced by decreased peak stress (P<0.025) and increased percent relaxation (18-week vs. Control, P<0.035) at multiple strain magnitudes and across all timepoints. At all timepoints, the CF tendons exhibited pathological changes aligned with tendon degeneration, as evidenced by increased Bonar scoring (P<0.001) and decreased collagen organization (6-week vs. Control, P=0.013). Increases in intramuscular adipose content were also documented through histomorphology analysis (6- and 18-week vs. Control, P<0.077). Significant changes in gene expression were noted at all timepoints. CONCLUSIONS: These data reveal that this new ovine CF model of chronic rotator cuff degeneration results in tendons with decreased mechanical properties, degenerative pathology characteristics, and gene expression profiles that aligned with the degenerative changes that have been noted in humans with tendinopathy. For these reasons, we believe this novel large animal model of chronic rotator cuff degeneration is a translational platform in which to test devices, therapies, and/or technologies aimed at repairing damage to the shoulder.

4.
Ann Transl Med ; 9(9): 741, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34268354

RESUMO

BACKGROUND: Untreated rotator cuff tears lead to irreversible tendon degeneration, resulting in unacceptable repair prognosis. The inability of current animal models of degenerated rotator cuff tendons to more fully emulate the manifestation and degree of pathology seen in humans with a previously torn rotator cuff tendon (s) significantly impairs the development of novel therapeutics. Therefore, the objective of this study was to develop a large-animal translational model of enthesis damage to the rotator cuff tendons to mimic the chronic degenerative changes that occur in patients that demonstrate clinical manifestations of tendinopathy. METHODS: A partial enthesis tear model (i.e., sharp transection) in adult sheep was created by cutting the tendon fibers perpendicularly through the enthesis midpoint, while leaving the other portion of the tendon in-tact. To assess tendon integrity, non-destructive biomechanical tests were performed, followed by histopathological, histomorphological, and gene expression analysis. Samples of degenerated human rotator cuff tendons obtained from patients undergoing reverse total shoulder arthroplasty to use for comparative pathological analysis. RESULTS: In the sheep model, transected tendons at all timepoints had significantly decreased mechanical properties. Histopathologic evaluation and Bonar scoring revealed that the tendons in sheep underwent degenerative changes similar in magnitude and manifestation as the degenerated human tendon samples. Furthermore, similar levels of collagen disorganization were noted between the 6 and 12-week ovine samples and the degenerated human samples. CONCLUSIONS: These findings indicate that the new sheep model of rotator cuff injury reliably recapitulates the structural and cellular changes that occur clinically in humans with chronic rotator cuff tendon injuries and suggest that this new model is well suited to evaluation of new therapeutic interventions.

5.
Vet Comp Orthop Traumatol ; 33(3): 212-219, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32232814

RESUMO

OBJECTIVE: Rotator cuff tendon tears are the most common soft tissue injuries in the shoulder joint. Various animal models have been described for this condition, but all current translational animal models have inherent weaknesses in their ability to generate chronically degenerated rotator cuff tendons. The objective of this study was to evaluate a partial infraspinatus tendon transection model as a means of creating a chronically degenerated rotator cuff tendon in an ovine model and compare the injury characteristics of this model to those observed in human patients with severe chronic rotator cuff tendon injuries. STUDY DESIGN: The infraspinatus tendons of six sheep were partially detached followed by capping of the detached medial section of the tendon with Gore-Tex. Human tissue samples of the supraspinatus tendon were harvested from patients undergoing primary reverse shoulder arthroplasty and served as positive controls of chronic rotator cuff tendinopathy. RESULTS: Transected sheep tendons were characterized predominantly by an acute reactive and reparative pathological process as compared with the chronic degenerative changes observed in the human tendons. In contrast, the non-transected portion of the ovine tendon showed histological changes, which were more chronic and degenerative in nature when compared with the transected tendon. CONCLUSION: Overall, histological features of the non-transected portion of ovine tendon were more similar to those observed in the chronic degenerated human tendon.


Assuntos
Lesões do Manguito Rotador/veterinária , Manguito Rotador/cirurgia , Doenças dos Ovinos/cirurgia , Traumatismos dos Tendões/veterinária , Animais , Modelos Animais de Doenças , Feminino , Humanos , Manguito Rotador/patologia , Lesões do Manguito Rotador/patologia , Lesões do Manguito Rotador/cirurgia , Ovinos , Tendinopatia/cirurgia , Tendinopatia/veterinária , Traumatismos dos Tendões/patologia , Traumatismos dos Tendões/cirurgia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...