Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 11(1): 4549, 2020 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-32917889

RESUMO

Arterial macrophages have different developmental origins, but the association of macrophage ontogeny with their phenotypes and functions in adulthood is still unclear. Here, we combine macrophage fate-mapping analysis with single-cell RNA sequencing to establish their cellular identity during homeostasis, and in response to angiotensin-II (AngII)-induced arterial inflammation. Yolk sac erythro-myeloid progenitors (EMP) contribute substantially to adventitial macrophages and give rise to a defined cluster of resident immune cells with homeostatic functions that is stable in adult mice, but declines in numbers during ageing and is not replenished by bone marrow (BM)-derived macrophages. In response to AngII inflammation, increase in adventitial macrophages is driven by recruitment of BM monocytes, while EMP-derived macrophages proliferate locally and provide a distinct transcriptional response that is linked to tissue regeneration. Our findings thus contribute to the understanding of macrophage heterogeneity, and associate macrophage ontogeny with distinct functions in health and disease.


Assuntos
Artérias/citologia , Arterite/imunologia , Diferenciação Celular/fisiologia , Homeostase/fisiologia , Macrófagos/fisiologia , Envelhecimento/fisiologia , Angiotensina II/administração & dosagem , Angiotensina II/imunologia , Animais , Artérias/fisiologia , Medula Óssea/fisiologia , Transplante de Medula Óssea , Linhagem da Célula , Modelos Animais de Doenças , Feminino , Células-Tronco Hematopoéticas/fisiologia , Humanos , Masculino , Camundongos , Camundongos Transgênicos , RNA-Seq , Regeneração/fisiologia , Análise de Célula Única , Quimeras de Transplante
2.
Semin Cancer Biol ; 29: 3-12, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25068994

RESUMO

The post-transcriptional control of gene expression mediated by RNA-binding proteins (RBPs), long non-coding RNAs (lncRNAs) as well as miRNAs is essential to determine tumor cell fate and thus is a major determinant in cancerogenesis. The IGF2 mRNA binding protein family (IGF2BPs) comprises three RBPs. Two members of the family, IGF2BP1 and IGF2BP3, are bona fide oncofetal proteins, which are de novo synthesized in various human cancers. In vitro studies revealed that IGF2BPs serve as post-transcriptional fine-tuners modulating the expression of genes implicated in the control of tumor cell proliferation, survival, chemo-resistance and metastasis. Consistently, the expression of both IGF2BP family members was reported to correlate with an overall poor prognosis and metastasis in various human cancers. Due to the fact that most reports used a pan-IGF2BP antibody for studying IGF2BP expression in cancer, paralogue-specific functions can barely be evaluated at present. Nonetheless, the accordance of IGF2BPs' role in promoting an aggressive phenotype of tumor-derived cells in vitro and their upregulated expression in aggressive malignancies provides strong evidence that IGF2BPs are powerful post-transcriptional oncogenes enhancing tumor growth, drug-resistance and metastasis. This suggests IGF2BPs as powerful biomarkers and candidate targets for cancer therapy.


Assuntos
Antígenos de Neoplasias/genética , Transformação Celular Neoplásica/genética , Neoplasias/patologia , Proteínas de Ligação a RNA/genética , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Metástase Neoplásica/genética , Metástase Neoplásica/patologia , Neoplasias/genética , Proteínas de Ligação a RNA/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...