Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arch Phys Med Rehabil ; 104(6): 909-917, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36572202

RESUMO

OBJECTIVE: To investigate the effects of 2 modes of exercise training, upper-body alone, and the addition of electrical stimulation of the lower body, to attenuate cardiac atrophy and loss of function in individuals with acute spinal cord injury (SCI). DESIGN: Randomized controlled trial. SETTING: Rehabilitation Hospital. PARTICIPANTS: Volunteers (N=27; 5 women, 22 men) who were <24 months post SCI. INTERVENTIONS: Volunteers completed either 6 months of no structured exercise (Control), arm rowing (AO), or a combination of arm rowing with electrical stimulation of lower body paralyzed muscle (functional electrical stimulation [FES] rowing). MAIN OUTCOME MEASURES: Transthoracic echocardiography was performed on each subject prior to and 6 months after the intervention. The relations between time since injury and exercise type to cardiac structure and function were assessed via 2-way repeated-measures analysis of variance and with multilevel linear regression. RESULTS: Time since injury was significantly associated with a continuous decline in cardiac structure and systolic function, specifically, a reduction in left ventricular mass (0.197 g/month; P=.049), internal diameter during systole (0.255 mm/month; P<.001), and diastole (0.217 mm/month; P=.019), as well as cardiac output (0.048 L/month, P=.019), and left ventricular percent shortening (0.256 %/month; P=.027). These associations were not differentially affected by exercise (Control vs AO vs FES, P>.05). CONCLUSIONS: These results indicate that within the subacute phase of recovery from SCI there is a linear loss of left ventricular cardiac structure and systolic function that is not attenuated by current rehabilitative aerobic exercise practices. Reductions in cardiac structure and function may increase the risk of cardiovascular disease in individuals with SCI and warrants further interventions to prevent cardiac decline.


Assuntos
Terapia por Estimulação Elétrica , Traumatismos da Medula Espinal , Feminino , Humanos , Masculino , Atrofia , Terapia por Estimulação Elétrica/métodos , Exercício Físico/fisiologia , Terapia por Exercício/métodos , Projetos Piloto , Traumatismos da Medula Espinal/reabilitação
2.
J Neurotrauma ; 39(15-16): 1050-1056, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35232233

RESUMO

The purpose of the present investigation was to assess the effects of whole-body exercise on the anaerobic threshold in individuals with spinal cord injury (SCI). Maximal oxygen uptake (VO2max) and oxygen uptake at anaerobic threshold (AT) were measured before and after six months of hybrid functional electrical stimulation row training in 47 participants with SCI aged 19-63, neurological levels of injury C4-L1, American Spinal Injury Association Impairment Scale grades A-D, and time since injury at enrollment from three months to 40 years. Changes in VO2max differed with time since injury, with greater increases earlier post-injury. The early chronic group (<3 years since injury; n = 31) increased VO2max from 1.65 ± 0.54 L/min at baseline to 1.83 ± 0.66 L/min at six months (p < 0.05), while the late chronic group (>3 years since injury; n = 16) did not change (1.42 ± 0.44 at baseline to 1.47 ± 0.41 L/min at six months, p = 0.36). Consistent with VO2max changes, AT increased in the early chronic group (1.03 ± 0.31 to 1.20 ± 0.40 L/min, p < 0.05) and did not change in the late chronic group (0.99 ± 0.31 to 0.99 ± 0.26 L/min, p = 0.92). Cumulative duration of exercise training was positively correlated to change in VO2max (r = 0.475, p < 0.05) but not to change in AT. Hybrid functional electrical stimulation row training is effective for increasing aerobic capacity and anaerobic threshold in individuals with SCI; however, these fitness benefits are only significant in individuals initiating the exercise intervention within three years of injury.


Assuntos
Limiar Anaeróbio , Traumatismos da Medula Espinal , Estimulação Elétrica , Terapia por Exercício , Humanos , Oxigênio , Consumo de Oxigênio/fisiologia , Traumatismos da Medula Espinal/terapia
3.
PM R ; 14(12): 1483-1489, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35077032

RESUMO

BACKGROUND: Heart rate variability is a measure of autonomic activity that is growing in popularity as a research outcome. However, despite its increased use, the known effects of respiration on heart rate variability measures are rarely accounted for in rehabilitation medicine research, leading to potential misinterpretation. OBJECTIVE: To describe the effect that unpaced and paced breathing introduces to heart rate variability measures in a rehabilitation medicine relevant example of individuals with spinal cord injury. DESIGN: Cross-sectional comparison of heart rate variability during unpaced and paced breathing (0.25 Hz, 15 breaths per minute) within the same individuals during the same lab session. SETTING: Academic autonomic physiology laboratory. INTERVENTIONS: Not applicable. MAIN OUTCOME MEASURES: Mean low frequency (LF) and high frequency (HF) heart rate variability power, percentage of total power derived from the LF spectrum, LF:HF ratio. RESULTS: Fifty-nine individuals with spinal cord injury completed laboratory assessments using standardized protocols (NCT02139436). In repeated measures within individuals, mean LF power was significantly higher in unpaced breathing compared to paced breathing (1292 vs. 573 ms2 , p < .001). A Bland-Altman plot demonstrated significant positive proportional bias for LF power when comparing unpaced and paced breathing conditions (R2  = 0.39). Mean HF power was similar between unpaced and paced breathing conditions, although there were wide positive and negative differences between measures, leading to notable uncertainty when respiratory confounders were not accounted for. The percentages of total power derived from the LF spectrum and the mean LF:HF ratio were both significantly higher for unpaced breathing compared to paced breathing (64 vs. 42%, p < .001; and 3.2 vs. 1.1, p < .001, respectively). CONCLUSION: Respiration has a significant effect on heart rate variability following spinal cord injury, and not accounting for this has serious consequences for accurate interpretation of unpaced data. Future studies of heart rate variability in rehabilitation medicine should accordingly consider paced breathing.


Assuntos
Pesquisa de Reabilitação , Traumatismos da Medula Espinal , Humanos , Estudos Transversais , Frequência Cardíaca/fisiologia , Respiração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...