Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Biol ; 14(4): 287-301, 2004 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-14972679

RESUMO

BACKGROUND: Meiosis produces haploid gametes from diploid progenitor cells. This reduction is achieved by two successive nuclear divisions after one round of DNA replication. Correct chromosome segregation during the first division depends on sister kinetochores being oriented toward the same spindle pole while homologous kinetochores must face opposite poles. Segregation during the second division depends on retention of sister chromatid cohesion between centromeres until the onset of anaphase II, which in Drosophila melanogaster depends on a protein called Mei-S332 that binds to centromeres. RESULTS: We report the identification of two homologs of Mei-S332 in fission yeast using a knockout screen. Together with their fly ortholog they define a protein family conserved from fungi to mammals. The two identified genes, sgo1 and sgo2, are required for retention of sister centromere cohesion between meiotic divisions and kinetochore orientation during meiosis I, respectively. The amount of meiotic cohesin's Rec8 subunit retained at centromeres after meiosis I is reduced in Deltasgo1, but not in Deltasgo2, cells, and Sgo1 appears to regulate cleavage of Rec8 by separase. Both Sgo1 and Sgo2 proteins localize to centromere regions. The abundance of Sgo1 protein normally declines after the first meiotic division, but extending its expression by altering its 3'UTR sequences does not greatly affect meiosis II. Its mere presence within the cell might therefore be insufficient to protect centromeric cohesion. CONCLUSIONS: A conserved protein family based on Mei-S332 has been identified. The two fission yeast homologs are implicated in meiosis I kinetochore orientation and retention of centromeric sister chromatid cohesion until meiosis II.


Assuntos
Proteínas Cromossômicas não Histona/genética , Segregação de Cromossomos/fisiologia , Meiose/fisiologia , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/genética , Sequência de Aminoácidos , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Centrômero/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Drosophila/genética , Endopeptidases/metabolismo , Perfilação da Expressão Gênica , Cinetocoros/metabolismo , Microscopia de Fluorescência , Dados de Sequência Molecular , Fosfoproteínas/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Separase , Alinhamento de Sequência
2.
Dev Cell ; 4(4): 535-48, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12689592

RESUMO

Halving of the chromosome number during meiosis I depends on the segregation of maternal and paternal centromeres. This process relies on the attachment of sister centromeres to microtubules emanating from the same spindle pole. We describe here the identification of a protein complex, Csm1/Lrs4, that is essential for monoorientation of sister kinetochores in Saccharomyces cerevisiae. Both proteins are present in vegetative cells, where they reside in the nucleolus. Only shortly before meiosis I do they leave the nucleolus and form a "monopolin" complex with the meiosis-specific Mam1 protein, which binds to kinetochores. Surprisingly, Csm1's homolog in Schizosaccharomyces pombe, Pcs1, is essential for accurate chromosome segregation during mitosis and meiosis II. Csm1 and Pcs1 might clamp together microtubule binding sites on the same (Pcs1) or sister (Csm1) kinetochores.


Assuntos
Nucléolo Celular/genética , Segregação de Cromossomos/genética , Cinetocoros/metabolismo , Meiose/genética , Proteínas Nucleares/genética , Saccharomyces cerevisiae/genética , Schizosaccharomyces/genética , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Nucléolo Celular/metabolismo , Centrômero/genética , Proteínas Cromossômicas não Histona , DNA/genética , DNA/metabolismo , Regulação Fúngica da Expressão Gênica/genética , Substâncias Macromoleculares , Dados de Sequência Molecular , Mutação/genética , Proteínas Nucleares/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Transporte Proteico/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...