Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38960379

RESUMO

Amylin, a member of the calcitonin family, acts via amylin receptors in the hindbrain and hypothalamus to suppress appetite. Native ligands of these receptors are peptides with short half-lives. Conjugating fatty acids to these peptides can increase their half-lives. The long-acting human amylin analog, NN1213, was generated from structure-activity efforts optimizing solubility, stability, receptor affinity, and selectivity, as well as in vivo potency and clearance. In both rats and dogs, a single dose of NN1213 reduced appetite in a dose-dependent manner and with a long duration of action. Consistent with the effect on appetite, studies in obese rats demonstrated that daily NN1213 dosing resulted in a dose-dependent reduction in body weight over a 21-day period. Magnetic resonance imaging indicated that this was primarily driven by loss of fat mass. Based on these data, NN1213 could be considered an attractive option for weight management in the clinical setting.

2.
J Med Chem ; 64(15): 11183-11194, 2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-34288673

RESUMO

A hallmark of the pancreatic hormone amylin is its high propensity toward the formation of amyloid fibrils, which makes it a challenging drug design effort. The amylin analogue pramlintide is commercially available for diabetes treatment as an adjunct to insulin therapy but requires three daily injections due to its short half-life. We report here the development of the stable, lipidated long-acting amylin analogue cagrilintide (23) and some of the structure-activity efforts that led to the selection of this analogue for clinical development with obesity as an indication. Cagrilintide is currently in clinical trial and has induced significant weight loss when dosed alone or in combination with the GLP-1 analogue semaglutide.


Assuntos
Desenvolvimento de Medicamentos , Hipoglicemiantes/farmacologia , Polipeptídeo Amiloide das Ilhotas Pancreáticas/antagonistas & inibidores , Relação Dose-Resposta a Droga , Humanos , Hipoglicemiantes/síntese química , Hipoglicemiantes/química , Polipeptídeo Amiloide das Ilhotas Pancreáticas/síntese química , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas/farmacologia , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade
3.
AAPS J ; 19(2): 397-408, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28000098

RESUMO

The insulin molecule was discovered in 1921. Shortly thereafter, its propensity towards amyloid fibril formation, fibrillation, was observed and described in the literature as a "precipitate." In the past decades, the increased incidence of type 2 diabetes has reached global epidemic proportions. This has emphasized the demands for both insulin production and the development of modern insulin products for unmet medical needs. Bringing such new insulin drug products to the market for the benefit of patients requires that many CMC-related processes are understood, described, and controlled. One potential undesired process is insulin fibril formation. The compound thioflavin T (ThT) is known as a fluorescent probe for amyloid fibrils. As such, ThT is utilized in a versatile research assay in microtiter plate format, the ThT assay. This review will describe an experimental set-up using not only a ThT microtiter plate assay but also two orthogonal methods. The use of the ThT assay in research and characterization of insulin analogues, as well as formulations of insulin, is described by cases drawn from the scientific literature and patents. The ThT assay is compared to other physical stability tests and in conclusion the advantages and limitations of the assay are compared.


Assuntos
Amiloide/química , Insulina/administração & dosagem , Tiazóis/química , Benzotiazóis , Bioensaio/métodos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Desenho de Fármacos , Corantes Fluorescentes/química , Humanos , Hipoglicemiantes/administração & dosagem , Hipoglicemiantes/efeitos adversos , Insulina/efeitos adversos
4.
Protein Sci ; 24(5): 779-88, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25627966

RESUMO

The structure of insulin, a glucose homeostasis-controlling hormone, is highly conserved in all vertebrates and stabilized by three disulfide bonds. Recently, we designed a novel insulin analogue containing a fourth disulfide bond located between positions A10-B4. The N-terminus of insulin's B-chain is flexible and can adapt multiple conformations. We examined how well disulfide bond predictions algorithms could identify disulfide bonds in this region of insulin. In order to identify stable insulin analogues with additional disulfide bonds, which could be expressed, the Cß cut-off distance had to be increased in many instances and single X-ray structures as well as structures from MD simulations had to be used. The analogues that were identified by the algorithm without extensive adjustments of the prediction parameters were more thermally stable as assessed by DSC and CD and expressed in higher yields in comparison to analogues with additional disulfide bonds that were more difficult to predict. In contrast, addition of the fourth disulfide bond rendered all analogues resistant to fibrillation under stress conditions and all stable analogues bound to the insulin receptor with picomolar affinities. Thus activity and fibrillation propensity did not correlate with the results from the prediction algorithm. Statement: A fourth disulfide bond has recently been introduced into insulin, a small two-chain protein containing three native disulfide bonds. Here we show that a prediction algorithm predicts four additional four disulfide insulin analogues which could be expressed. Although the location of the additional disulfide bonds is only slightly shifted, this shift impacts both stability and activity of the resulting insulin analogues.


Assuntos
Dissulfetos/química , Insulina/química , Conformação Proteica , Sequência de Aminoácidos , Dicroísmo Circular , Regulação da Expressão Gênica , Humanos , Insulina/biossíntese , Insulina/genética , Modelos Moleculares , Simulação de Dinâmica Molecular , Ligação Proteica , Dobramento de Proteína
5.
Protein Sci ; 22(3): 296-305, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23281053

RESUMO

Insulin is a key hormone controlling glucose homeostasis. All known vertebrate insulin analogs have a classical structure with three 100% conserved disulfide bonds that are essential for structural stability and thus the function of insulin. It might be hypothesized that an additional disulfide bond may enhance insulin structural stability which would be highly desirable in a pharmaceutical use. To address this hypothesis, we designed insulin with an additional interchain disulfide bond in positions A10/B4 based on Cα-Cα distances, solvent exposure, and side-chain orientation in human insulin (HI) structure. This insulin analog had increased affinity for the insulin receptor and apparently augmented glucodynamic potency in a normal rat model compared with HI. Addition of the disulfide bond also resulted in a 34.6°C increase in melting temperature and prevented insulin fibril formation under high physical stress even though the C-terminus of the B-chain thought to be directly involved in fibril formation was not modified. Importantly, this analog was capable of forming hexamer upon Zn addition as typical for wild-type insulin and its crystal structure showed only minor deviations from the classical insulin structure. Furthermore, the additional disulfide bond prevented this insulin analog from adopting the R-state conformation and thus showing that the R-state conformation is not a prerequisite for binding to insulin receptor as previously suggested. In summary, this is the first example of an insulin analog featuring a fourth disulfide bond with increased structural stability and retained function.


Assuntos
Antígenos CD/metabolismo , Cistina/química , Glucose/metabolismo , Hipoglicemiantes/química , Insulina Regular Humana/análogos & derivados , Receptor de Insulina/metabolismo , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Substituição de Aminoácidos , Animais , Transporte Biológico/efeitos dos fármacos , Glicemia/análise , Células Cultivadas , Cistina/metabolismo , Relação Dose-Resposta a Droga , Estabilidade de Medicamentos , Humanos , Hipoglicemiantes/administração & dosagem , Hipoglicemiantes/metabolismo , Hipoglicemiantes/farmacologia , Insulina Regular Humana/química , Insulina Regular Humana/genética , Insulina Regular Humana/metabolismo , Insulina Regular Humana/farmacologia , Proteínas Mutantes/administração & dosagem , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Proteínas Mutantes/farmacologia , Conformação Proteica , Estabilidade Proteica , Ratos , Ratos Mutantes , Ratos Wistar , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Zinco/metabolismo
6.
PLoS One ; 7(2): e30882, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22363506

RESUMO

An ingenious system evolved to facilitate insulin binding to the insulin receptor as a monomer and at the same time ensure sufficient stability of insulin during storage. Insulin dimer is the cornerstone of this system. Insulin dimer is relatively weak, which ensures dissociation into monomers in the circulation, and it is stabilized by hexamer formation in the presence of zinc ions during storage in the pancreatic ß-cell. Due to the transient nature of insulin dimer, direct investigation of this important form is inherently difficult. To address the relationship between insulin oligomerization and insulin stability and function, we engineered a covalently linked insulin dimer in which two monomers were linked by a disulfide bond. The structure of this covalent dimer was identical to the self-association dimer of human insulin. Importantly, this covalent dimer was capable of further oligomerization to form the structural equivalent of the classical hexamer. The covalently linked dimer neither bound to the insulin receptor, nor induced a metabolic response in vitro. However, it was extremely thermodynamically stable and did not form amyloid fibrils when subjected to mechanical stress, underlining the importance of oligomerization for insulin stability.


Assuntos
Insulina/metabolismo , Engenharia de Proteínas , Multimerização Proteica , Animais , Área Sob a Curva , Cristalografia por Raios X , Humanos , Insulina/isolamento & purificação , Estabilidade Proteica , Estrutura Secundária de Proteína , Sus scrofa
7.
Biochemistry ; 49(29): 6234-46, 2010 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-20568733

RESUMO

Through binding to and signaling via the insulin receptor (IR), insulin is involved in multiple effects on growth and metabolism. The current model for the insulin-IR binding process is one of a biphasic reaction. It is thought that the insulin peptide possesses two binding interfaces (sites 1 and 2), which allow it to bridge the two alpha-subunits of the insulin receptor during the biphasic binding reaction. The sequential order of the binding events involving sites 1 and 2, as well as the molecular interactions corresponding to the fast and slow binding events, is still unknown. In this study we examined the series of events that occur during the binding process with the help of three insulin analogues: insulin, an analogue mutated in site 2 (B17A insulin), and an analogue in which part of site 1 was deleted (Des A1-4 insulin), both with and without a fluorescent probe attached. The binding properties of these analogues were tested using two soluble Midi IR constructs representing the two naturally occurring isoforms of the IR, Midi IR-A and Midi IR-B. Our results showed that in the initial events leading to Midi IR-insulin complex formation, insulin site 2 binds to the IR in a very fast binding event. Subsequent to this initial fast phase, a slower rate-limiting phase occurs, consistent with a conformational change in the insulin-IR complex, which forms the final high-affinity complex. The terminal residues A1-A4 of the insulin A-chain are shown to be important for the slow binding phase, as insulin lacking these amino acids is unable to induce a conformational change of IR and has a severely impaired binding affinity. Moreover, differences in the second phase of the binding process involving insulin site 1 between the IR-A and IR-B isoforms suggest that the additional amino acids encoded by exon 11 in the IR-B isoform influence the binding process.


Assuntos
Insulina/metabolismo , Receptor de Insulina/metabolismo , Sítios de Ligação , Éxons , Humanos , Insulina/química , Insulina/genética , Cinética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estrutura Terciária de Proteína , Receptor de Insulina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...