Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Med Imaging (Bellingham) ; 10(Suppl 1): S11913, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37223324

RESUMO

Purpose: Portable magnetic resonance imaging (pMRI) has potential to rapidly acquire images at the patients' bedside to improve access in locations lacking MRI devices. The scanner under consideration has a magnetic field strength of 0.064 T, thus image-processing algorithms to improve image quality are required. Our study evaluated pMRI images produced using a deep learning (DL)-based advanced reconstruction scheme to improve image quality by reducing image blurring and noise to determine if diagnostic performance was similar to images acquired at 1.5 T. Approach: Six radiologists viewed 90 brain MRI cases (30 acute ischemic stroke (AIS), 30 hemorrhage, 30 no lesion) with T1, T2, and fluid attenuated inversion recovery sequences, once using standard of care (SOC) images (1.5 T) and once using pMRI DL-based advanced reconstruction images. Observers provided a diagnosis and decision confidence. Time to review each image was recorded. Results: Receiver operating characteristic area under the curve revealed overall no significant difference (p=0.0636) between pMRI and SOC images. Examining each abnormality, for acute ischemic stroke, there was a significant difference (p=0.0042) with SOC better than pMRI; but for hemorrhage, there was no significant difference (p=0.1950). There was no significant difference in viewing time for pMRI versus SOC (p=0.0766) or abnormality (p=0.3601). Conclusions: The deep learning (DL)-based reconstruction scheme to improve pMRI was successful for hemorrhage, but for acute ischemic stroke the scheme could still be improved. For neurocritical care especially in remote and/or resource poor locations, pMRI has significant clinical utility, although radiologists should be aware of limitations of low-field MRI devices in overall quality and take that into account when diagnosing. As an initial triage to aid in the decision of whether to transport or keep patients on site, pMRI images likely provide enough information.

2.
Med Image Anal ; 81: 102538, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35926336

RESUMO

While enabling accelerated acquisition and improved reconstruction accuracy, current deep MRI reconstruction networks are typically supervised, require fully sampled data, and are limited to Cartesian sampling patterns. These factors limit their practical adoption as fully-sampled MRI is prohibitively time-consuming to acquire clinically. Further, non-Cartesian sampling patterns are particularly desirable as they are more amenable to acceleration and show improved motion robustness. To this end, we present a fully self-supervised approach for accelerated non-Cartesian MRI reconstruction which leverages self-supervision in both k-space and image domains. In training, the undersampled data are split into disjoint k-space domain partitions. For the k-space self-supervision, we train a network to reconstruct the input undersampled data from both the disjoint partitions and from itself. For the image-level self-supervision, we enforce appearance consistency obtained from the original undersampled data and the two partitions. Experimental results on our simulated multi-coil non-Cartesian MRI dataset demonstrate that DDSS can generate high-quality reconstruction that approaches the accuracy of the fully supervised reconstruction, outperforming previous baseline methods. Finally, DDSS is shown to scale to highly challenging real-world clinical MRI reconstruction acquired on a portable low-field (0.064 T) MRI scanner with no data available for supervised training while demonstrating improved image quality as compared to traditional reconstruction, as determined by a radiologist study.


Assuntos
Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Movimento (Física) , Aprendizado de Máquina Supervisionado
3.
Med Image Comput Comput Assist Interv ; 13436: 66-77, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37576451

RESUMO

Establishing voxelwise semantic correspondence across distinct imaging modalities is a foundational yet formidable computer vision task. Current multi-modality registration techniques maximize hand-crafted inter-domain similarity functions, are limited in modeling nonlinear intensity-relationships and deformations, and may require significant re-engineering or underperform on new tasks, datasets, and domain pairs. This work presents ContraReg, an unsupervised contrastive representation learning approach to multi-modality deformable registration. By projecting learned multi-scale local patch features onto a jointly learned inter-domain embedding space, ContraReg obtains representations useful for non-rigid multi-modality alignment. Experimentally, ContraReg achieves accurate and robust results with smooth and invertible deformations across a series of baselines and ablations on a neonatal T1-T2 brain MRI registration task with all methods validated over a wide range of deformation regularization strengths.

4.
Magn Reson Med ; 86(6): 3274-3291, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34254355

RESUMO

PURPOSE: To introduce a novel deep learning-based approach for fast and high-quality dynamic multicoil MR reconstruction by learning a complementary time-frequency domain network that exploits spatiotemporal correlations simultaneously from complementary domains. THEORY AND METHODS: Dynamic parallel MR image reconstruction is formulated as a multivariable minimization problem, where the data are regularized in combined temporal Fourier and spatial (x-f) domain as well as in spatiotemporal image (x-t) domain. An iterative algorithm based on variable splitting technique is derived, which alternates among signal de-aliasing steps in x-f and x-t spaces, a closed-form point-wise data consistency step and a weighted coupling step. The iterative model is embedded into a deep recurrent neural network which learns to recover the image via exploiting spatiotemporal redundancies in complementary domains. RESULTS: Experiments were performed on two datasets of highly undersampled multicoil short-axis cardiac cine MRI scans. Results demonstrate that our proposed method outperforms the current state-of-the-art approaches both quantitatively and qualitatively. The proposed model can also generalize well to data acquired from a different scanner and data with pathologies that were not seen in the training set. CONCLUSION: The work shows the benefit of reconstructing dynamic parallel MRI in complementary time-frequency domains with deep neural networks. The method can effectively and robustly reconstruct high-quality images from highly undersampled dynamic multicoil data ( 16× and 24× yielding 15 s and 10 s scan times respectively) with fast reconstruction speed (2.8 seconds). This could potentially facilitate achieving fast single-breath-hold clinical 2D cardiac cine imaging.


Assuntos
Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Algoritmos , Imagem Cinética por Ressonância Magnética , Redes Neurais de Computação
5.
Magn Reson Med ; 86(4): 1859-1872, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34110037

RESUMO

PURPOSE: To systematically investigate the influence of various data consistency layers and regularization networks with respect to variations in the training and test data domain, for sensitivity-encoded accelerated parallel MR image reconstruction. THEORY AND METHODS: Magnetic resonance (MR) image reconstruction is formulated as a learned unrolled optimization scheme with a down-up network as regularization and varying data consistency layers. The proposed networks are compared to other state-of-the-art approaches on the publicly available fastMRI knee and neuro dataset and tested for stability across different training configurations regarding anatomy and number of training samples. RESULTS: Data consistency layers and expressive regularization networks, such as the proposed down-up networks, form the cornerstone for robust MR image reconstruction. Physics-based reconstruction networks outperform post-processing methods substantially for R = 4 in all cases and for R = 8 when the training and test data are aligned. At R = 8, aligning training and test data is more important than architectural choices. CONCLUSION: In this work, we study how dataset sizes affect single-anatomy and cross-anatomy training of neural networks for MRI reconstruction. The study provides insights into the robustness, properties, and acceleration limits of state-of-the-art networks, and our proposed down-up networks. These key insights provide essential aspects to successfully translate learning-based MRI reconstruction to clinical practice, where we are confronted with limited datasets and various imaged anatomies.


Assuntos
Processamento de Imagem Assistida por Computador , Neurologia , Aceleração , Imageamento por Ressonância Magnética , Redes Neurais de Computação
6.
IEEE Trans Med Imaging ; 38(12): 2755-2767, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31021795

RESUMO

Detecting acoustic shadows in ultrasound images is important in many clinical and engineering applications. Real-time feedback of acoustic shadows can guide sonographers to a standardized diagnostic viewing plane with minimal artifacts and can provide additional information for other automatic image analysis algorithms. However, automatically detecting shadow regions using learning-based algorithms is challenging because pixel-wise ground truth annotation of acoustic shadows is subjective and time consuming. In this paper, we propose a weakly supervised method for automatic confidence estimation of acoustic shadow regions. Our method is able to generate a dense shadow-focused confidence map. In our method, a shadow-seg module is built to learn general shadow features for shadow segmentation, based on global image-level annotations as well as a small number of coarse pixel-wise shadow annotations. A transfer function is introduced to extend the obtained binary shadow segmentation to a reference confidence map. In addition, a confidence estimation network is proposed to learn the mapping between input images and the reference confidence maps. This network is able to predict shadow confidence maps directly from input images during inference. We use evaluation metrics such as DICE, inter-class correlation, and so on, to verify the effectiveness of our method. Our method is more consistent than human annotation and outperforms the state-of-the-art quantitatively in shadow segmentation and qualitatively in confidence estimation of shadow regions. Furthermore, we demonstrate the applicability of our method by integrating shadow confidence maps into tasks such as ultrasound image classification, multi-view image fusion, and automated biometric measurements.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Aprendizado de Máquina Supervisionado , Ultrassonografia Pré-Natal/métodos , Algoritmos , Aprendizado Profundo , Feminino , Feto/diagnóstico por imagem , Humanos , Gravidez
7.
Med Image Anal ; 53: 197-207, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30802813

RESUMO

We propose a novel attention gate (AG) model for medical image analysis that automatically learns to focus on target structures of varying shapes and sizes. Models trained with AGs implicitly learn to suppress irrelevant regions in an input image while highlighting salient features useful for a specific task. This enables us to eliminate the necessity of using explicit external tissue/organ localisation modules when using convolutional neural networks (CNNs). AGs can be easily integrated into standard CNN models such as VGG or U-Net architectures with minimal computational overhead while increasing the model sensitivity and prediction accuracy. The proposed AG models are evaluated on a variety of tasks, including medical image classification and segmentation. For classification, we demonstrate the use case of AGs in scan plane detection for fetal ultrasound screening. We show that the proposed attention mechanism can provide efficient object localisation while improving the overall prediction performance by reducing false positives. For segmentation, the proposed architecture is evaluated on two large 3D CT abdominal datasets with manual annotations for multiple organs. Experimental results show that AG models consistently improve the prediction performance of the base architectures across different datasets and training sizes while preserving computational efficiency. Moreover, AGs guide the model activations to be focused around salient regions, which provides better insights into how model predictions are made. The source code for the proposed AG models is publicly available.


Assuntos
Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Redes Neurais de Computação , Radiografia Abdominal/métodos , Tomografia Computadorizada por Raios X/métodos , Ultrassonografia Pré-Natal/métodos , Algoritmos , Conjuntos de Dados como Assunto , Feminino , Humanos , Gravidez
8.
IEEE Trans Med Imaging ; 38(9): 2151-2164, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30676949

RESUMO

Deep learning approaches have achieved state-of-the-art performance in cardiac magnetic resonance (CMR) image segmentation. However, most approaches have focused on learning image intensity features for segmentation, whereas the incorporation of anatomical shape priors has received less attention. In this paper, we combine a multi-task deep learning approach with atlas propagation to develop a shape-refined bi-ventricular segmentation pipeline for short-axis CMR volumetric images. The pipeline first employs a fully convolutional network (FCN) that learns segmentation and landmark localization tasks simultaneously. The architecture of the proposed FCN uses a 2.5D representation, thus combining the computational advantage of 2D FCNs networks and the capability of addressing 3D spatial consistency without compromising segmentation accuracy. Moreover, a refinement step is designed to explicitly impose shape prior knowledge and improve segmentation quality. This step is effective for overcoming image artifacts (e.g., due to different breath-hold positions and large slice thickness), which preclude the creation of anatomically meaningful 3D cardiac shapes. The pipeline is fully automated, due to network's ability to infer landmarks, which are then used downstream in the pipeline to initialize atlas propagation. We validate the pipeline on 1831 healthy subjects and 649 subjects with pulmonary hypertension. Extensive numerical experiments on the two datasets demonstrate that our proposed method is robust and capable of producing accurate, high-resolution, and anatomically smooth bi-ventricular 3D models, despite the presence of artifacts in input CMR volumes.


Assuntos
Técnicas de Imagem Cardíaca/métodos , Aprendizado Profundo , Coração/diagnóstico por imagem , Imageamento Tridimensional/métodos , Imagem Cinética por Ressonância Magnética/métodos , Algoritmos , Humanos
9.
IEEE Trans Med Imaging ; 38(1): 280-290, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30080145

RESUMO

Accelerating the data acquisition of dynamic magnetic resonance imaging leads to a challenging ill-posed inverse problem, which has received great interest from both the signal processing and machine learning communities over the last decades. The key ingredient to the problem is how to exploit the temporal correlations of the MR sequence to resolve aliasing artifacts. Traditionally, such observation led to a formulation of an optimization problem, which was solved using iterative algorithms. Recently, however, deep learning-based approaches have gained significant popularity due to their ability to solve general inverse problems. In this paper, we propose a unique, novel convolutional recurrent neural network architecture which reconstructs high quality cardiac MR images from highly undersampled k-space data by jointly exploiting the dependencies of the temporal sequences as well as the iterative nature of the traditional optimization algorithms. In particular, the proposed architecture embeds the structure of the traditional iterative algorithms, efficiently modeling the recurrence of the iterative reconstruction stages by using recurrent hidden connections over such iterations. In addition, spatio-temporal dependencies are simultaneously learnt by exploiting bidirectional recurrent hidden connections across time sequences. The proposed method is able to learn both the temporal dependence and the iterative reconstruction process effectively with only a very small number of parameters, while outperforming current MR reconstruction methods in terms of reconstruction accuracy and speed.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Redes Neurais de Computação , Algoritmos , Artefatos , Coração/diagnóstico por imagem , Humanos
10.
IEEE Trans Med Imaging ; 37(2): 491-503, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29035212

RESUMO

Inspired by recent advances in deep learning, we propose a framework for reconstructing dynamic sequences of 2-D cardiac magnetic resonance (MR) images from undersampled data using a deep cascade of convolutional neural networks (CNNs) to accelerate the data acquisition process. In particular, we address the case where data are acquired using aggressive Cartesian undersampling. First, we show that when each 2-D image frame is reconstructed independently, the proposed method outperforms state-of-the-art 2-D compressed sensing approaches, such as dictionary learning-based MR image reconstruction, in terms of reconstruction error and reconstruction speed. Second, when reconstructing the frames of the sequences jointly, we demonstrate that CNNs can learn spatio-temporal correlations efficiently by combining convolution and data sharing approaches. We show that the proposed method consistently outperforms state-of-the-art methods and is capable of preserving anatomical structure more faithfully up to 11-fold undersampling. Moreover, reconstruction is very fast: each complete dynamic sequence can be reconstructed in less than 10 s and, for the 2-D case, each image frame can be reconstructed in 23 ms, enabling real-time applications.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imagem Cinética por Ressonância Magnética/métodos , Redes Neurais de Computação , Algoritmos , Bases de Dados Factuais , Coração/diagnóstico por imagem , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...