Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 297(4): 101126, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34461097

RESUMO

Transient receptor potential (TRP) cation channels, which are conserved across mammals, flies, fish, sea squirts, worms, and fungi, essentially contribute to cellular Ca2+ signaling. The activity of the unique TRP channel in yeast, TRP yeast channel 1 (TRPY1), relies on the vacuolar and cytoplasmic Ca2+ concentration. However, the mechanism(s) of Ca2+-dependent regulation of TRPY1 and possible contribution(s) of Ca2+-binding proteins are yet not well understood. Our results demonstrate a Ca2+-dependent binding of yeast calmodulin (CaM) to TRPY1. TRPY1 activity was increased in the cmd1-6 yeast strain, carrying a non-Ca2+-binding CaM mutant, compared with the parent strain expressing wt CaM (Cmd1). Expression of Cmd1 in cmd1-6 yeast rescued the wt phenotype. In addition, in human embryonic kidney 293 cells, hypertonic shock-induced TRPY1-dependent Ca2+ influx and Ca2+ release were increased by the CaM antagonist ophiobolin A. We found that coexpression of mammalian CaM impeded the activity of TRPY1 by reinforcing effects of endogenous CaM. Finally, inhibition of TRPY1 by Ca2+-CaM required the cytoplasmic amino acid stretch E33-Y92. In summary, our results show that TRPY1 is under inhibitory control of Ca2+-CaM and that mammalian CaM can replace yeast CaM for this inhibition. These findings add TRPY1 to the innumerable cellular proteins, which include a variety of ion channels, that use CaM as a constitutive or dissociable Ca2+-sensing subunit, and contribute to a better understanding of the modulatory mechanisms of Ca2+-CaM.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Calmodulina/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Canais de Cátion TRPC/metabolismo , Vacúolos/metabolismo , Cálcio/química , Calmodulina/antagonistas & inibidores , Calmodulina/química , Calmodulina/genética , Células HEK293 , Humanos , Domínios Proteicos , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Sesterterpenos/farmacologia , Canais de Cátion TRPC/química , Canais de Cátion TRPC/genética , Vacúolos/química , Vacúolos/genética
2.
J Cell Sci ; 132(7)2019 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-30837289

RESUMO

The nuclear pore complex (NPC) is the major conduit for nucleocytoplasmic transport and serves as a platform for gene regulation and DNA repair. Several nucleoporins undergo ubiquitylation and SUMOylation, and these modifications play an important role in nuclear pore dynamics and plasticity. Here, we perform a detailed analysis of these post-translational modifications of yeast nuclear basket proteins under normal growth conditions as well as upon cellular stresses, with a focus on SUMOylation. We find that the balance between the dynamics of SUMOylation and deSUMOylation of Nup60 and Nup2 at the NPC differs substantially, particularly in G1 and S phase. While Nup60 is the unique target of genotoxic stress within the nuclear basket that probably belongs to the SUMO-mediated DNA damage response pathway, both Nup2 and Nup60 show a dramatic increase in SUMOylation upon osmotic stress, with Nup2 SUMOylation being enhanced in Nup60 SUMO-deficient mutant yeast strains. Taken together, our data reveal that there are several levels of crosstalk between nucleoporins, and that the post-translational modifications of the NPC serve in sensing cellular stress signals.


Assuntos
Cisteína Endopeptidases/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Poro Nuclear/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Sumoilação , Transporte Ativo do Núcleo Celular , Cisteína Endopeptidases/química , Cisteína Endopeptidases/genética , Reparo do DNA , Poro Nuclear/ultraestrutura , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Processamento de Proteína Pós-Traducional , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
3.
iScience ; 11: 1-12, 2019 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-30572205

RESUMO

By vacuolar patch-clamp and Ca2+ imaging experiments, we show that the yeast vacuolar transient receptor potential (TRPY) channel 1 is activated by cytosolic Ca2+ and inhibited by Ca2+ from the vacuolar lumen. The channel is cooperatively affected by vacuolar Ca2+ (Hill coefficient, 1.5), suggesting that it may accommodate a Ca2+ receptor that can bind two calcium ions. Alanine scanning of six negatively charged amino acid residues in the transmembrane S5 and S6 linker, facing the vacuolar lumen, revealed that two aspartate residues, 401 and 405, are essential for current inhibition and direct binding of 45Ca2+. Expressed in HEK-293 cells, a significant fraction of TRPY1, present in the plasma membrane, retained its Ca2+ sensitivity. Based on these data and on homology with TRPV channels, we conclude that D401 and D405 are key residues within the vacuolar vestibule of the TRPY1 pore that decrease cation access or permeation after Ca2+ binding.

4.
J Cell Sci ; 128(2): 305-16, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25413348

RESUMO

Pom33 is an integral membrane protein of the yeast nuclear pore complex (NPC), and it is required for proper NPC distribution and assembly. To characterize the Pom33 NPC-targeting determinants, we performed immunoprecipitation experiments followed by mass spectrometry analyses. This identified a new Pom33 partner, the nuclear import factor Kap123. In vitro experiments revealed a direct interaction between the Pom33 C-terminal domain (CTD) and Kap123. In silico analysis predicted the presence of two amphipathic α-helices within Pom33-CTD. Circular dichroism and liposome co-flotation assays showed that this domain is able to fold into α-helices in the presence of liposomes and preferentially binds to highly curved lipid membranes. When expressed in yeast, under conditions abolishing Pom33-CTD membrane association, this domain behaves as a Kap123-dependent nuclear localization signal (NLS). Although deletion of Pom33 C-terminal domain (Pom33(ΔCTD)-GFP) impaired Pom33 stability and NPC targeting, mutants affecting either Kap123 binding or the amphipathic properties of the α-helices did not display any detectable defect. However, combined impairment of lipid and Kap123 binding affects targeting of Pom33 to NPCs. These data highlight the requirement of multiple determinants and mechanisms for proper NPC localization of Pom33.


Assuntos
Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Poro Nuclear/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , beta Carioferinas/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Dicroísmo Circular , Regulação Fúngica da Expressão Gênica , Lipídeos/genética , Lipossomos/metabolismo , Sinais de Localização Nuclear/genética , Sinais de Localização Nuclear/metabolismo , Poro Nuclear/genética , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Estrutura Secundária de Proteína , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , beta Carioferinas/genética
5.
Elife ; 3: e03473, 2014 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-25144938

RESUMO

Within a single generation time a growing yeast cell imports ∼14 million ribosomal proteins (r-proteins) into the nucleus for ribosome production. After import, it is unclear how these intrinsically unstable and aggregation-prone proteins are targeted to the ribosome assembly site in the nucleolus. Here, we report the discovery of a conserved nuclear carrier Tsr2 that coordinates transfer of the r-protein eS26 to the earliest assembling pre-ribosome, the 90S. In vitro studies revealed that Tsr2 efficiently dissociates importin:eS26 complexes via an atypical RanGTP-independent mechanism that terminates the import process. Subsequently, Tsr2 binds the released eS26, shields it from proteolysis, and ensures its safe delivery to the 90S pre-ribosome. We anticipate similar carriers-termed here escortins-to securely connect the nuclear import machinery with pathways that deposit r-proteins onto developing pre-ribosomal particles.


Assuntos
Proteínas de Transporte/metabolismo , Núcleo Celular/metabolismo , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Saccharomyces cerevisiae/metabolismo , Transporte Ativo do Núcleo Celular , Sequência de Aminoácidos , Proteínas de Transporte/química , Proteínas de Transporte/genética , Núcleo Celular/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Ativadoras de GTPase/química , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Carioferinas/química , Carioferinas/genética , Carioferinas/metabolismo , Dados de Sequência Molecular , Ligação Proteica , Estabilidade Proteica , Proteólise , RNA Ribossômico 18S/química , RNA Ribossômico 18S/genética , RNA Ribossômico 18S/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Ribossômicas/química , Proteínas Ribossômicas/genética , Ribossomos/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , beta Carioferinas/química , beta Carioferinas/genética , beta Carioferinas/metabolismo
6.
J Biol Chem ; 289(14): 9766-80, 2014 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-24563462

RESUMO

TRPC4 proteins function as Ca(2+) conducting, non-selective cation channels in endothelial, smooth muscle, and neuronal cells. To further characterize the roles of TRPC4 in vivo, detailed information about the molecular composition of native channel complexes and their association with cellular signaling networks is needed. Therefore, a mouse brain cDNA library was searched for novel TRPC4-interacting proteins using a modified yeast two-hybrid assay. This screen identified Trans-activation Response RNA-binding protein 2 (Tarpb2), a protein that recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Tarbp2 was found to bind to the C terminus of TRPC4 and TRPC5 and to modulate agonist-dependent TRPC4-induced Ca(2+) entry. A stretch of basic residues within the Tarbp2 protein is required for these actions. Tarbp2 binding to and modulation of TRPC4 occurs in the presence of endogenously expressed Dicer but is no longer detectable when the Dicer cDNA is overexpressed. Dicer activity in crude cell lysates is increased in the presence of Ca(2+), most probably by Ca(2+)-dependent proteolytic activation of Dicer. Apparently, Tarbp2 binding to TRPC4 promotes changes of cytosolic Ca(2+) and, thereby, leads to a dynamic regulation of Dicer activity, essentially at low endogenous Dicer concentrations.


Assuntos
Cálcio/metabolismo , MicroRNAs/biossíntese , Processamento Pós-Transcricional do RNA/fisiologia , Proteínas de Ligação a RNA/metabolismo , Canais de Cátion TRPC/metabolismo , Animais , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Citosol/metabolismo , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Células HEK293 , Humanos , Camundongos , MicroRNAs/genética , Proteínas de Ligação a RNA/genética , Ribonuclease III/genética , Ribonuclease III/metabolismo , Canais de Cátion TRPC/genética
7.
EMBO J ; 31(11): 2461-72, 2012 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-22562154

RESUMO

The nuclear import receptor Kap114 carries transcription factors and other cargos across nuclear pores into the nucleus. Here we show that yeast Kap114 is modified by SUMO (small ubiquitin-related modifier) and that sumoylation is required for Kap114-mediated nuclear import. Among the four known SUMO-specific E3 ligases in yeast, Mms21 is the preferred E3 enzyme responsible for the covalent attachment of SUMO to the Kap114 protein. Kap114 is sumoylated on lysine residue 909, which is part of a ΨKxD/E sumoylation consensus motif. Kap114 containing a lysine-to-arginine point mutation at position 909 mislocalizes to the nucleus and is defective in promoting nuclear import. Similarly, mutants defective in sumoylation or desumoylation specifically accumulate Kap114 in the nucleus and are blocked in import of Kap114 cargos. Ran-GTP is not sufficient to disassemble Kap114/cargo complexes, which necessitates additional cargo release mechanisms in the nucleus. Remarkably, sumoylation of Kap114 greatly stimulates cargo dissociation in vitro. We propose that sumoylation occurs at the site of Kap114 cargo function and that SUMO is a cargo release factor involved in intranuclear targeting.


Assuntos
Transporte Ativo do Núcleo Celular , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sumoilação , beta Carioferinas/metabolismo , Lisina/metabolismo , Mutação Puntual , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitina-Proteína Ligases/metabolismo , beta Carioferinas/genética
8.
Biochem Biophys Res Commun ; 406(3): 383-8, 2011 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-21329658

RESUMO

Cargos destined to enter or leave the cell nucleus are typically transported by receptors of the importin ß family to pass the nuclear pore complex. The yeast Saccharomyces cerevisiae comprises 14 members of this protein family, which can be divided in importins and exportins. The Ran GTPase regulates the association and dissociation of receptors and cargos as well as the transport direction through the nuclear pore. All receptors bind to Ran exclusively in its GTP-bound state and this event is restricted to the nuclear compartment. We determined the Ran-GTP binding properties of all yeast transport receptors by biosensor measurements and observed that the affinity of importins for Ran-GTP differs significantly. The dissociation constants range from 230 pM to 270 nM, which is mostly based on a variability of the off-rate constants. The divergent affinity of importins for Ran-GTP suggests the existence of a novel mode of nucleocytoplasmic transport regulation. Furthermore, the cellular concentration of ß-receptors and of other Ran-binding proteins was determined. We found that the number of ß-receptors altogether about equals the amounts of yeast Ran, but Ran-GTP is not limiting in the nucleus. The implications of our results for nucleocytoplasmic transport mechanisms are discussed.


Assuntos
Núcleo Celular/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , beta Carioferinas/metabolismo , Proteína ran de Ligação ao GTP/metabolismo , Transporte Ativo do Núcleo Celular , Guanosina Trifosfato/metabolismo
9.
Mol Biol Cell ; 21(9): 1609-19, 2010 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-20219973

RESUMO

The yeast SBF transcription factor is a heterodimer comprised of Swi4 and Swi6 that has a well defined role in cell cycle-specific transcription. SBF serves a second function in the transcriptional response to cell wall stress in which activated Mpk1 mitogen-activated protein kinase of the cell wall integrity signaling pathway forms a complex with Swi4, the DNA binding subunit of SBF, conferring upon Swi4 the ability to bind DNA and activate transcription of FKS2. Although Mpk1-Swi4 complex formation and transcriptional activation of FKS2 does not require Mpk1 catalytic activity, Swi6 is phosphorylated by Mpk1 and must be present in the Mpk1-Swi4 complex for transcriptional activation of FKS2. Here, we find that Mpk1 regulates Swi6 nucleocytoplasmic shuttling in a biphasic manner. First, formation of the Mpk1-Swi4 complex recruits Swi6 to the nucleus for transcriptional activation. Second, Mpk1 negatively regulates Swi6 by phosphorylation on Ser238, which inhibits nuclear entry. Ser238 neighbors a nuclear localization signal (NLS) whose function is blocked by phosphorylation at Ser238 in a manner similar to the regulation by Cdc28 of another Swi6 NLS, revealing a mechanism for the integration of multiple signals to a single endpoint. Finally, the Kap120 beta-importin binds the Mpk1-regulated Swi6 NLS but not the Cdc28-regulated NLS.


Assuntos
Núcleo Celular/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Transporte Ativo do Núcleo Celular , Parede Celular/enzimologia , Parede Celular/metabolismo , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Immunoblotting , Carioferinas/genética , Carioferinas/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Microscopia de Fluorescência , Proteínas Quinases Ativadas por Mitógeno/genética , Mutação , Sinais de Localização Nuclear/genética , Fosforilação , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Serina/metabolismo , Fatores de Transcrição/genética
10.
FEBS Lett ; 584(10): 2028-32, 2010 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-20035756

RESUMO

Transient receptor potential (TRP) channels are found among mammals, flies, worms, ciliates, Chlamydomonas, and yeast but are absent in plants. These channels are believed to be tetramers of proteins containing six transmembrane domains (TMs). Their primary structures are diverse with sequence similarities only in some short amino acid sequence motifs mainly within sequences covering TM5, TM6, and adjacent domains. In the yeast genome, there is one gene encoding a TRP-like sequence. This protein forms an ion channel in the vacuolar membrane and is therefore called Yvc1 for yeast vacuolar conductance 1. In the following we summarize its prominent features.


Assuntos
Canais de Cálcio/química , Canais de Cálcio/metabolismo , Espaço Intracelular/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Canais de Potencial de Receptor Transitório/química , Canais de Potencial de Receptor Transitório/metabolismo , Animais , Condutividade Elétrica , Fenótipo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiologia , Canais de Cátion TRPC
11.
Mol Cell Biol ; 28(17): 5348-58, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18573877

RESUMO

The spindle pole body (SPB) represents the microtubule organizing center in the budding yeast Saccharomyces cerevisiae. It is a highly structured organelle embedded in the nuclear membrane, which is required to anchor microtubules on both sides of the nuclear envelope. The protein Spc72, a component of the SPB, is located at the cytoplasmic face of this organelle and serves as a receptor for the gamma-tubulin complex. In this paper we show that it is also a binding partner of the nuclear export receptor Xpo1/Crm1. Xpo1 binds its cargoes in a Ran-dependent fashion via a short leucine-rich nuclear export signal (NES). We show that binding of Spc72 to Xpo1 depends on Ran-GTP and a functional NES in Spc72. Mutations in this NES have severe consequences for mitotic spindle morphology in vivo. This is also the case for xpo1 mutants, which show a reduction in cytoplasmic microtubules. In addition, we find a subpopulation of Xpo1 localized at the SPB. Based on these data, we propose a functional link between Xpo1 and the SPB and discuss a role for this exportin in spindle biogenesis in budding yeast.


Assuntos
Núcleo Celular/metabolismo , Carioferinas/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Saccharomyces cerevisiae/metabolismo , Fuso Acromático/metabolismo , Transporte Ativo do Núcleo Celular , Guanosina Trifosfato/metabolismo , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Mutação/genética , Sinais de Exportação Nuclear , Proteínas Nucleares/metabolismo , Fragmentos de Peptídeos/metabolismo , Ligação Proteica , Transporte Proteico , Saccharomyces cerevisiae/citologia , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteína Exportina 1
12.
J Mol Biol ; 379(4): 678-94, 2008 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-18485366

RESUMO

Proteins can enter the nucleus through various receptor-mediated import pathways. One class of import cargos carries a classical nuclear localization signal (cNLS) containing a short cluster of basic residues. This pathway involves importin alpha (Impalpha), which possesses the cNLS binding site, and importin beta (Impbeta), which translocates the import complex through the nuclear pore complex. The defining criteria for a cNLS protein from Saccharomyces cerevisiae are an in vivo import defect in Impalpha and Impbeta mutants, direct binding to purified Impalpha, and stimulation of this binding by Impbeta. We show for the first time that endogenous S. cerevisiae proteins Prp20, Cdc6, Swi5, Cdc45, and Clb2 fulfill all of these criteria identifying them as authentic yeast cNLS cargos. Furthermore, we found that the targeting signal of Prp20 is a bipartite cNLS and that of Cdc6 is a monopartite cNLS. Basic residues present within these motifs are of different significance for the interaction with Impalpha. We determined the binding constants for import complexes containing the five cNLS proteins by surface plasmon resonance spectrometry. The dissociation constants for cNLS/alpha/beta complexes differ considerably, ranging from 1 nM for Cdc6 to 112 nM for Swi5, suggesting that the nuclear import kinetics is determined by the strength of cNLS/Impalpha binding. Impbeta enhances the affinity of Impalpha for cNLSs approximately 100-fold. This stimulation of cNLS binding to Impalpha results from a faster association in the presence of Impbeta, whereas the dissociation rate is unaffected by Impbeta. This implies that, after entry into the nucleus, the release of Impbeta by the Ran guanosine triphosphatase (Ran GTPase) from the import complex is not sufficient to dissociate the cNLS/Impalpha subcomplex. Our observation that the nucleoporin Nup2, which had been previously shown to release the cNLS from Impalpha in vitro, is required for efficient import of all the genuine cNLS cargos supports a general role of Nup2 in import termination.


Assuntos
Sinais de Localização Nuclear/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transporte Ativo do Núcleo Celular , Sequência de Aminoácidos , Sítios de Ligação , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Genes Fúngicos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Fatores de Troca do Nucleotídeo Guanina , Carioferinas/genética , Carioferinas/metabolismo , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação , Sinais de Localização Nuclear/genética , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , beta Carioferinas/genética , beta Carioferinas/metabolismo
13.
J Biol Chem ; 282(27): 19292-301, 2007 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-17485461

RESUMO

Nucleo-cytoplasmic transport of proteins is mostly mediated by specific interaction between transport receptors of the importin beta family and signal sequences present in their cargo. While several signal sequences, in particular the classical nuclear localization signal (NLS) recognized by the heterodimeric importin alpha/beta complex are well known, the signals recognized by other importin beta-like transport receptors remain to be characterized in detail. Here we present the systematic analysis of the nuclear import of Saccharomyces cerevisiae Asr1p, a nonessential alcohol-responsive Ring/PHD finger protein that shuttles between nucleus and cytoplasm but accumulates in the nucleus upon alcohol stress. Nuclear import of Asr1p is constitutive and mediated by its C-terminal domain. A short sequence comprising residues 243-280 is sufficient and necessary for active targeting to the nucleus. Moreover, the nuclear import signal is conserved from yeast to mammals. In vitro, the nuclear localization signal of Asr1p directly interacts with the importins Kap114p, Kap95p, Pse1p, Kap123p, or Kap104p, interactions that are sensitive to the presence of RanGTP. In vivo, these importins cooperate in nuclear import. Interestingly, the same importins mediate nuclear transport of histone H2A. Based on mutational analysis and sequence comparison with a region mediating nuclear import of histone H2A, we identified a novel type of NLS with the consensus sequence R/KxxL(x)(n)V/YxxV/IxK/RxxxK/R that is recognized by five yeast importins and connects them into a highly efficient network for nuclear import of proteins.


Assuntos
Proteínas de Transporte/metabolismo , Núcleo Celular/metabolismo , Carioferinas/metabolismo , Sinais de Localização Nuclear/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Transporte Ativo do Núcleo Celular/genética , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas de Transporte/genética , Conectina , Etanol/farmacologia , Histonas/genética , Histonas/metabolismo , Carioferinas/genética , Mamíferos/genética , Mamíferos/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Mutação , Sinais de Localização Nuclear/genética , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Solventes/farmacologia , Estresse Fisiológico/metabolismo
14.
Mol Cell Biol ; 26(8): 3170-80, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16581791

RESUMO

The nucleocytoplasmic exchange of macromolecules is mediated by receptors specialized in passage through the nuclear pore complex. The majority of these receptors belong to the importin beta protein family, which has 14 members in Saccharomyces cerevisiae. Nine importins carry various cargos from the cytoplasm into the nucleus, whereas four exportins mediate nuclear export. Kap120 is the only receptor whose transport cargo has not been found previously. Here, we characterize Kap120 as an importin for the ribosome maturation factor Rpf1, which was identified in a two-hybrid screen. Kap120 binds directly to Rpf1 in vitro and is released by Ran-GTP. At least three parallel import pathways exist for Rpf1, since nuclear import is defective in strains with the importins Kap120, Kap114, and Nmd5 deleted. Both kap120 and rpf1 mutants accumulate large ribosomal subunits in the nucleus. The nuclear accumulation of 60S ribosomal subunits in kap120 mutants is abolished upon RPF1 overexpression, indicating that Kap120 does not function in the actual ribosomal export step but rather in import of ribosome maturation factors.


Assuntos
Proteínas Fúngicas/metabolismo , Carioferinas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Ribossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transporte Ativo do Núcleo Celular , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Técnicas do Sistema de Duplo-Híbrido
15.
J Biol Chem ; 281(18): 12218-26, 2006 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-16507575

RESUMO

Activity of Ho, the yeast mating switch endonuclease, is restricted to a narrow time window of the cell cycle. Ho is unstable and despite being a nuclear protein is exported to the cytoplasm for proteasomal degradation. We report here the molecular basis for the highly efficient nuclear import of Ho and the relation between its short half-life and passage through the nucleus. The Ho nuclear import machinery is functionally redundant, being based on two bipartite nuclear localization signals, recognized by four importins of the ribosomal import system. Ho degradation is regulated by the DNA damage response and Ho retained in the cytoplasm is stabilized, implying that Ho acquires its crucial degradation signals in the nucleus. Ho arose by domestication of a fungal VMA1 intein. A comparison of the primary sequences of Ho and fungal VMA1 inteins shows that the Ho nuclear localization signals are highly conserved in all Ho proteins, but are absent from VMA1 inteins. Thus adoption of a highly efficient import strategy occurred very early in the evolution of Ho. This may have been a crucial factor in establishment of homothallism in yeast, and a key event in the rise of the Saccharomyces sensu stricto.


Assuntos
Desoxirribonucleases de Sítio Específico do Tipo II/fisiologia , Sinais de Localização Nuclear , Ribossomos/metabolismo , Transporte Ativo do Núcleo Celular , Sequência de Aminoácidos , Transporte Biológico , Citoplasma/metabolismo , Inteínas , Carioferinas/metabolismo , Dados de Sequência Molecular , Mutação , Filogenia , Plasmídeos/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae
16.
Mol Cell ; 18(3): 355-67, 2005 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-15866177

RESUMO

Cse1 mediates nuclear export of importin alpha, the nuclear localization signal (NLS) import adaptor. We report the 3.1 A resolution structure of cargo-free Cse1, representing this HEAT repeat protein in its cytosolic state. Cse1 is compact, consisting of N- and C-terminal arches that interact to form a ring. Comparison with the structure of cargo-bound Cse1 shows a major conformational change leading to opening of the structure upon cargo binding. The largest structural changes occur within a hinge region centered at HEAT repeat 8. This repeat contains a conserved insertion that connects the RanGTP and importin alpha contact sites and that is essential for binding. In the cargo-free state, the RanGTP binding sites are occluded and the importin alpha sites are distorted. Mutations that destabilize the N- to C-terminal interaction uncouple importin alpha and Ran binding, suggesting that the closed conformation prevents association with importin alpha.


Assuntos
Proteínas Nucleares/química , Proteínas de Saccharomyces cerevisiae/química , Transporte Ativo do Núcleo Celular/fisiologia , Sequência de Aminoácidos , Animais , Sítios de Ligação , Cristalografia por Raios X , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas de Transporte Nucleocitoplasmático , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência , alfa Carioferinas/metabolismo , Proteína ran de Ligação ao GTP/metabolismo
17.
J Biol Chem ; 279(27): 28174-81, 2004 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-15117954

RESUMO

During fermentation, yeast cells are exposed to increasing amounts of alcohol, which is stressful and affects both growth and viability. On the molecular level, numerous aspects of alcohol stress signaling remain unresolved. We have identified a novel yeast Ring/PHD finger protein that constitutively shuttles between nucleus and cytoplasm but accumulates in the nucleus upon exposure to ethanol, 2-propanol, or 1-butanol. Subcellular localization of this protein is not altered by osmotic, oxidative, or heat stress or during nitrogen or glucose starvation. Because of its exclusive sensitivity to environmental alcohol, the protein was called Asr1p for Alcohol Sensitive Ring/PHD finger 1 protein. Nuclear accumulation of Asr1p is rapid, reversible, and requires a functional Ran/Gsp1p gradient. Asr1p contains two N terminally located leucine-rich nuclear export sequences (NES) required for nuclear export. Consistently, it accumulates in the nucleus of xpo1-1 cells at restrictive temperature and forms a trimeric complex with the exportin Xpo1p and Ran-GTP. Deletion of ASR1 leads to sensitivity in growth on medium containing alcohol or detergent, consistent with a function of Asr1p in alcohol-related signaling. Asr1p is the first reported protein that changes its subcellular localization specifically upon exposure to alcohol and therefore represents a key element in the analysis of alcohol-responsive signaling.


Assuntos
Álcoois/metabolismo , Proteínas de Transporte/metabolismo , Núcleo Celular/metabolismo , Proteínas Fúngicas/fisiologia , Receptores Citoplasmáticos e Nucleares , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Sequência de Aminoácidos , Proteínas de Transporte/química , Citoplasma/metabolismo , Proteínas Fúngicas/química , Proteínas de Fluorescência Verde , Carioferinas/metabolismo , Proteínas Luminescentes/metabolismo , Microscopia de Fluorescência , Dados de Sequência Molecular , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Proteínas Nucleares/metabolismo , Oxigênio/metabolismo , Plasmídeos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Transdução de Sinais , Temperatura , Fatores de Tempo , Proteína Exportina 1
18.
Eur J Cell Biol ; 83(10): 511-20, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15679097

RESUMO

Proteins are imported from the cytoplasm into the nucleus by importin beta-related transport receptors. The yeast Saccharomyces cerevisiae contains ten of these importins, but only two of them are essential. After transfer through the nuclear pore, importins release their cargo upon binding to the Ran GTPase, the key regulator of nuclear transport. We investigated the import of the core histones in yeast and found that four importins are involved. The essential Pse1p and the nonessential importins Kap114p, Kap104p, and Yrb4p/Kap123p specifically bind to histones H2A and H2B. Release of H2 histones from importins requires Ran-GTP and DNA simultaneously suggesting a function of the importins in intranuclear targeting. H3 and H4 associate mainly with Pse1p and the dissociation requires Ran but not DNA, which points to a different import mechanism. Import of green fluorescent protein fusions to H2A and H2B requires primarily Pse1p and Kap114p, whereas Yrb4p plays an auxiliary role. Pse1p is predominantly necessary for nuclear uptake of H3 and H4, while Kap104p and Yrb4p also support import. We conclude from our in vivo and in vitro experiments that import of the essential histones is mediated mainly by the essential importin Pse1p, while the non-essential Kap114p functions in a parallel import pathway for H2A and H2B.


Assuntos
Núcleo Celular/metabolismo , Histonas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/química , Transporte Ativo do Núcleo Celular/fisiologia , Histonas/química , Proteínas de Membrana Transportadoras/metabolismo , Proteínas Nucleares/metabolismo , Ligação Proteica , Subunidades Proteicas/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , beta Carioferinas , Proteína ran de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...