Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37847234

RESUMO

Background: The efficacy of cannabis treatment is determined by the active pharmaceutical ingredients (APIs) of the ingested composition. Despite smoking predominancy in cannabis treatment, very little is known regarding its yield and provision rate of cannabis APIs. Material and Methods: Ten experiments were performed, studying changes in APIs content during smoking, using a designated smoking machine. APIs content was evaluated via analysis of a cigarette's residuals and of the smoke composition; cannabinoid and terpene content were assessed. Results: Results demonstrated increased cannabinoid content in the cigarette sections closer to the mouth, as compared with those closer to the lit end. Similarly, cannabinoid content in the inhaled smoke increases as smoking progresses. Similar results are found for sesquiterpenes. Monoterpenes, having lower boiling points reach the smoke before the sesquiterpenes and cannabinoids do. Conclusion: A mechanism is proposed, including: (i) decarboxylation and evaporation of APIs adjacent to the lit end, (ii) transition of API vapors away from the hot zone, (iii) condensation of APIs in cigarette's sections closer to the mouth, and (iv) re-evaporation of APIs as the hot zone approaches, thereby reaching the smoke. Differences in the boiling points between the various APIs result in varying composition along the cigarette and in the inhaled smoke. The main implications are: (i) APIs delivery through smoking cannot be uniform, (ii) APIs amount per puff increases as smoking progresses, and (iii) terpenes are inhaled before the cannabinoids are. Thus, in addition to its known health-threatening hazards, smoking entails nonuniform provision of APIs, even within the same cigarette.

2.
Cannabis Cannabinoid Res ; 8(3): 414-425, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-35442765

RESUMO

Medical cannabis products contain dozens of active pharmaceutical ingredients (APIs) derived from the cannabis plant. However, their actual compositions and relative doses significantly change according to the production methods. Product compositions are strongly dependent on processing step conditions and on components' evaporation during those steps. Review of the documentation presented to caregivers and to patients show erroneous data or misinterpretation of data related to the evaporation, for example, cannabinoids' boiling points, as well as confusions between terms, such as boiling, vaporization, and evaporation. Clarifying these aspects is essential for caregivers, for researchers, and for developers of manufacturing processes. Original and literature data were analyzed, comparing composition changes during various processing steps and correlating the extent of change to components' vapor pressures at the corresponding temperature. Evaporation-related composition changes start at temperatures as low as those of drying and curing and become extensive during decarboxylation. The relative rate of components' evaporation is determined by their relative vapor pressure and monoterpenes are lost first. On vaping, terpenes are inhaled before cannabinoids do. Commercial medical cannabis products are deficient in terpenes, mainly monoterpenes, compared with the cannabis plants used to produce them. Terms, such as "whole plant" and "full spectrum," are misleading since no product actually reflects the original cannabis plant composition. There are important implications for medical cannabis manufacturing and for the ability to make the most out of the terpene API contribution. Medical cannabis products' composition and product delivery are controlled by the relative vapor pressure of the various APIs. Quantitative data provided in this study can be used for improvement to reach better accuracy, reproducibility, and preferred medical cannabis compositions.


Assuntos
Canabinoides , Cannabis , Maconha Medicinal , Vaping , Humanos , Maconha Medicinal/uso terapêutico , Pressão de Vapor , Preparações Farmacêuticas , Reprodutibilidade dos Testes , Terpenos , Monoterpenos
3.
Sci Adv ; 8(46): eabq0793, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36383670

RESUMO

The formation of sea ice in polar regions is possible because a salinity gradient or halocline keeps the water column stable despite intense cooling. Here, we demonstrate that a unique water property is central to the maintenance of the polar halocline, namely, that the thermal expansion coefficient (TEC) of seawater increases by one order of magnitude between polar and tropical regions. Using a fully coupled climate model, it is shown that, even with excess precipitations, sea ice would not form at all if the near-freezing temperature TEC was not well below its ocean average value. The leading order dependence of the TEC on temperature is essential to the coexistence of the mid/low-latitude thermally stratified and the high-latitude sea ice-covered oceans that characterize our planet. A key implication is that nonlinearities of water properties have a first-order impact on the global climate of Earth and possibly exoplanets.

4.
Phys Chem Chem Phys ; 23(34): 18308-18313, 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34269785

RESUMO

Understanding the mechanism responsible for the protein low-temperature crossover observed at T≈ 220 K can help us improve current cryopreservation technologies. This crossover is associated with changes in the dynamics of the system, such as in the mean-squared displacement, whereas experimental evidence of structural changes is sparse. Here we investigate hydrated lysozyme proteins by using a combination of wide-angle X-ray scattering and molecular dynamics (MD) simulations. Experimentally we suppress crystallization by accurate control of the protein hydration level, which allows access to temperatures down to T = 175 K. The experimental data indicate that the scattering intensity peak at Q = 1.54 Å-1, attributed to interatomic distances, exhibits temperature-dependent changes upon cooling. In the MD simulations it is possible to decompose the water and protein contributions and we observe that, while the protein component is nearly temperature independent, the hydration water peak shifts in a fashion similar to that of bulk water. The observed trends are analysed by using the water-water and water-protein radial distribution functions, which indicate changes in the local probability density of hydration water.


Assuntos
Temperatura Baixa , Simulação de Dinâmica Molecular , Proteínas/química , Água/química , Difração de Raios X , Conformação Proteica
5.
J Phys Chem A ; 124(51): 10879-10889, 2020 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-33319553

RESUMO

Accommodation of vapor-phase water molecules into ice crystal surfaces is a fundamental process controlling atmospheric ice crystal growth. Experimental studies investigating the accommodation process with various techniques report widely spread values of the water accommodation coefficient on ice, αice, and the results on its potential temperature dependence are inconclusive. We run molecular dynamics simulations of molecules condensing onto the basal plane of ice Ih using the TIP4P/Ice empirical force field and characterize the accommodated state from this molecular perspective, utilizing the interaction energy, the tetrahedrality order parameter, and the distance below the instantaneous interface as criteria. Changes of the order parameter turn out to be a suitable measure to distinguish between the surface and bulk states of a molecule condensing onto the disordered interface. In light of the findings from the molecular dynamics, we discuss and re-analyze a recent experimental data set on αice obtained with an environmental molecular beam (EMB) setup [Kong, X.; J. Phys. Chem. A 2014, 118 (22), 3973-3979] using kinetic molecular flux modeling, aiming at a more comprehensive picture of the accommodation process from a molecular perspective. These results indicate that the experimental observations indeed cannot be explained by evaporation alone. At the same time, our results raise the issue of rapidly growing relaxation times upon decreasing temperature, challenging future experimental efforts to cover relevant time scales. Finally, we discuss the relevance of the water accommodation coefficient on ice in the context of atmospheric cloud particle growth processes.

6.
Phys Rev Lett ; 125(7): 076002, 2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32857536

RESUMO

We study the structural dynamics of liquid water by time-resolved anisotropic x-ray scattering under the optical Kerr effect condition. In this way, we can separate the anisotropic scattering decay of 160 fs from the delayed temperature increase of ∼0.1 K occurring at 1 ps and quantify transient changes in the O-O pair distribution function. Polarizable molecular dynamics simulations reproduce well the experiment, indicating transient alignment of molecules along the electric field, which shortens the nearest-neighbor distances. In addition, analysis of the simulated water local structure provides evidence that two hypothesized fluctuating water configurations exhibit different polarizability.

7.
Phys Chem Chem Phys ; 22(14): 7625-7632, 2020 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-32226993

RESUMO

Studying the freezing of saltwater on a molecular level is of fundamental importance for improving freeze desalination techniques. In this study, we investigate the freezing process of NaCl solutions using a combination of X-ray diffraction and molecular dynamics simulations (MD) for different salt-water concentrations, ranging from seawater conditions to saturation. A linear superposition model reproduces well the brine rejection due to hexagonal ice Ih formation and allows us to quantify the fraction of ice and brine. Furthermore, upon cooling at T = 233 K, we observe the formation of NaCl·2H2O hydrates (hydrohalites), which coexist with ice Ih. MD simulations are utilized to model the formation of NaCl crystal hydrates. From the simulations, we estimate that the salinity of the newly produced ice is 0.5% mass percent (m/m) due to ion inclusions, which is within the salinity limits of fresh water. In addition, we show the effect of ions on the local ice structure using the tetrahedrality parameter and follow the crystallite formation using the ion coordination parameter and cluster analysis.

8.
J Chem Phys ; 151(3): 034508, 2019 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-31325915

RESUMO

Based on recent experimental data that can be interpreted as indicating the presence of specific structures in liquid water, we build and optimize two structural models which we compare with the available experimental data. To represent the proposed high-density liquid structures, we use a model consisting of chains of water molecules, and for low-density liquid, we investigate fused dodecahedra as templates for tetrahedral fluctuations. The computed infrared spectra of the models are in very good agreement with the extracted experimental spectra for the two components, while the extracted structures from molecular dynamics (MD) simulations give spectra that are intermediate between the experimentally derived spectra. Computed x-ray absorption and emission spectra as well as the O-O radial distribution functions of the proposed structures are not contradicted by experiment. The stability of the proposed dodecahedral template structures is investigated in MD simulations by seeding the starting structure, and remnants found to persist on an ∼30 ps time scale. We discuss the possible significance of such seeds in simulations and whether they can be viable candidates as templates for structural fluctuations below the compressibility minimum of liquid water.

9.
Plant Sci ; 283: 301-310, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31128700

RESUMO

Mandrakes (Mandragora spp., Solanaceae) are known to contain tropane alkaloids and have been used since antiquity in traditional medicine. Tropane alkaloids such as scopolamine and hyoscyamine are used in modern medicine to treat pain, motion sickness, as eye pupil dilators and antidotes against organo-phosphate poisoning. Hyoscyamine is converted to 6ß-hydroxyhyoscyamine (anisodamine) and scopolamine by hyoscyamine 6ß-hydroxylase (H6H), a 2-oxoglutarate dependent dioxygenase. We describe here a marked chemo-diversity in the tropane alkaloid content in Mandragora spp. M. officinarum and M. turcomanica lack anisodamine and scopolamine but display up to 10 fold higher hyoscyamine levels as compared with M. autumnalis. Transcriptomic analyses revealed that H6H is highly conserved among scopolamine-producing Solanaceae. MoH6H present in M. officinarum differs in several amino acid residues including a homozygotic mutation in the substrate binding region of the protein and its prevalence among accessions was confirmed by Cleaved-Amplified-Polymorphic-Sequence analyses. Functional expression revealed that MaH6H, a gene isolated from M. autumnalis encodes an active H6H enzyme while the MoH6H sequence isolated from M. officinarum was functionally inactive. A single G to T mutation in nucleotide 663 of MoH6H is associated with the lack of anisodamine and scopolamine in M. officinalis.


Assuntos
Alcaloides/metabolismo , Mandragora/metabolismo , Oxigenases de Função Mista/metabolismo , Perfilação da Expressão Gênica , Genes de Plantas/genética , Mandragora/genética , Oxigenases de Função Mista/genética , Escopolamina/metabolismo , Análise de Sequência de DNA , Alcaloides de Solanáceas/metabolismo
10.
Plant Sci ; 274: 223-230, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30080607

RESUMO

Volatile esters contribute to the aroma and flavor of many fruits but are normally absent in grape berries (Vitis vinifera L.). To examine the biosynthetic potential of grape berries to form volatile esters, berry sections were incubated with exogenous L-Phe, L-Leu or L-Met. In general, amino-acid incubation caused the accumulation of the respective aldehydes and alcohols. Moreover, L-Leu incubation resulted in the accumulation of 3-methylbutyl acetate and L-Phe incubation resulted in the accumulation 2-phenylethyl acetate in 'Muscat Hamburg' but not in the other grape accessions. Exogenous L-Met administration did not result in volatile esters accumulation but the accumulation of sulfur volatile compounds such as methional and dimethyl disulfide was prominent. Berry-derived cell-free extracts displayed differential alcohol acetyltransferase activities and supported the formation of 3-methylbutyl acetate and benzyl acetate. 2-Phenylethyl acetate was produced only in 'Muscat Hamburg' cell-free extracts. VvAAT2, a newly characterized gene, was preferentially expressed in 'Muscat Hamburg' berries and functionally expressed in E. coli. VvAAT2 possesses alcohol acetyltransferase activity utilizing benzyl alcohol, 2-phenylethanol, hexanol or 3-methylbutanol as substrates. Our study demonstrates that grape berries have a concealed potential to accumulate volatile esters and this process is limited by substrate availability.


Assuntos
Acetiltransferases/metabolismo , Aminoácidos/metabolismo , Ésteres/metabolismo , Frutas/metabolismo , Vitis/metabolismo , Compostos Orgânicos Voláteis/metabolismo , Acetiltransferases/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Frutas/genética , Álcool Feniletílico/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Especificidade por Substrato , Vitis/genética
11.
J Phys Chem B ; 122(30): 7616-7624, 2018 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-30036063

RESUMO

The structure factor and oxygen-oxygen pair-distribution functions of amorphous ices at liquid nitrogen temperature ( T = 77 K) have been derived from wide-angle X-ray scattering (WAXS) up to interatomic distances of r = 23 Å, where local structure differences between the amorphous ices can be seen for the entire range. The distances to the first coordination shell for low-, high-, and very-high-density amorphous ice (LDA, HDA, VHDA) were determined to be 2.75, 2.78, and 2.80 Å, respectively, with high accuracy due to measurements up to a large momentum transfer of 23 Å-1. Similarities in pair-distribution functions between LDA and supercooled water at 254.1 K, HDA and liquid water at 365.9 K, and VHDA and high-pressure liquid water were found up to around 8 Å, but beyond that at longer distances, the similarities were lost. In addition, the structure of the high-density amorphous ices was compared to high-pressure crystalline ices IV, IX , and XII, and conclusions were drawn about the local ordering.

12.
Proc Natl Acad Sci U S A ; 114(31): 8193-8198, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28652327

RESUMO

Water exists in high- and low-density amorphous ice forms (HDA and LDA), which could correspond to the glassy states of high- (HDL) and low-density liquid (LDL) in the metastable part of the phase diagram. However, the nature of both the glass transition and the high-to-low-density transition are debated and new experimental evidence is needed. Here we combine wide-angle X-ray scattering (WAXS) with X-ray photon-correlation spectroscopy (XPCS) in the small-angle X-ray scattering (SAXS) geometry to probe both the structural and dynamical properties during the high-to-low-density transition in amorphous ice at 1 bar. By analyzing the structure factor and the radial distribution function, the coexistence of two structurally distinct domains is observed at T = 125 K. XPCS probes the dynamics in momentum space, which in the SAXS geometry reflects structural relaxation on the nanometer length scale. The dynamics of HDA are characterized by a slow component with a large time constant, arising from viscoelastic relaxation and stress release from nanometer-sized heterogeneities. Above 110 K a faster, strongly temperature-dependent component appears, with momentum transfer dependence pointing toward nanoscale diffusion. This dynamical component slows down after transition into the low-density form at 130 K, but remains diffusive. The diffusive character of both the high- and low-density forms is discussed among different interpretations and the results are most consistent with the hypothesis of a liquid-liquid transition in the ultraviscous regime.

13.
J Chem Phys ; 145(8): 084503, 2016 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-27586931

RESUMO

We analyze the recent temperature dependent oxygen-oxygen pair-distribution functions from experimental high-precision x-ray diffraction data of bulk water by Skinner et al. [J. Chem. Phys. 141, 214507 (2014)] with particular focus on the intermediate range where small, but significant, correlations are found out to 17 Å. The second peak in the pair-distribution function at 4.5 Å is connected to tetrahedral coordination and was shown by Skinner et al. to change behavior with temperature below the temperature of minimum isothermal compressibility. Here we show that this is associated also with a peak growing at 11 Å which strongly indicates a collective character of fluctuations leading to the enhanced compressibility at lower temperatures. We note that the peak at ∼13.2 Å exhibits a temperature dependence similar to that of the density with a maximum close to 277 K or 4 °C. We analyze simulations of the TIP4P/2005 water model in the same manner and find excellent agreement between simulations and experiment albeit with a temperature shift of ∼20 K.

14.
Chem Rev ; 116(13): 7570-89, 2016 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-27195477

RESUMO

This review article focuses on the most recent advances in X-ray and neutron scattering studies of water structure, from ambient temperature to the deeply supercooled and amorphous states, and of water diffusive and collective dynamics, in disparate thermodynamic conditions and environments. In particular, the ability to measure X-ray and neutron diffraction of water with unprecedented high accuracy in an extended range of momentum transfers has allowed the derivation of detailed O-O pair correlation functions. A panorama of the diffusive dynamics of water in a wide range of temperatures (from 400 K down to supercooled water) and pressures (from ambient up to multiple gigapascals) is presented. The recent results obtained by quasi-elastic neutron scattering under high pressure are compared with the existing data from nuclear magnetic resonance, dielectric and infrared measurements, and modeling. A detailed description of the vibrational dynamics of water as measured by inelastic neutron scattering is presented. The dependence of the water vibrational density of states on temperature and pressure, and in the presence of biological molecules, is discussed. Results about the collective dynamics of water and its dispersion curves as measured by coherent inelastic neutron scattering and inelastic X-ray scattering in different thermodynamic conditions are reported.

15.
J Chem Phys ; 144(12): 124502, 2016 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-27036456

RESUMO

In the present study, we investigate the process of evaporative cooling of nanometer-sized droplets in vacuum using molecular dynamics simulations with the TIP4P/2005 water model. The results are compared to the temperature evolution calculated from the Knudsen theory of evaporation which is derived from kinetic gas theory. The calculated and simulation results are found to be in very good agreement for an evaporation coefficient equal to unity. Our results are of interest to experiments utilizing droplet dispensers as well as to cloud micro-physics.

16.
J Phys Chem Lett ; 6(14): 2826-2832, 2015 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-26207172

RESUMO

We present an analysis of ice nucleation kinetics from near-ambient pressure water as temperature decreases below the homogeneous limit TH by cooling micrometer-sized droplets (microdroplets) evaporatively at 103-104 K/s and probing the structure ultrafast using femtosecond pulses from the Linac Coherent Light Source (LCLS) free-electron X-ray laser. Below 232 K, we observed a slower nucleation rate increase with decreasing temperature than anticipated from previous measurements, which we suggest is due to the rapid decrease in water's diffusivity. This is consistent with earlier findings that microdroplets do not crystallize at <227 K, but vitrify at cooling rates of 106-107 K/s. We also hypothesize that the slower increase in the nucleation rate is connected with the proposed "fragile-to-strong" transition anomaly in water.

17.
J Chem Phys ; 142(4): 044505, 2015 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-25637993

RESUMO

The structure of bulk liquid water was recently probed by x-ray scattering below the temperature limit of homogeneous nucleation (TH) of ∼232 K [J. A. Sellberg et al., Nature 510, 381-384 (2014)]. Here, we utilize a similar approach to study the structure of bulk liquid water below TH using oxygen K-edge x-ray emission spectroscopy (XES). Based on previous XES experiments [T. Tokushima et al., Chem. Phys. Lett. 460, 387-400 (2008)] at higher temperatures, we expected the ratio of the 1b1' and 1b1″ peaks associated with the lone-pair orbital in water to change strongly upon deep supercooling as the coordination of the hydrogen (H-) bonds becomes tetrahedral. In contrast, we observed only minor changes in the lone-pair spectral region, challenging an interpretation in terms of two interconverting species. A number of alternative hypotheses to explain the results are put forward and discussed. Although the spectra can be explained by various contributions from these hypotheses, we here emphasize the interpretation that the line shape of each component changes dramatically when approaching lower temperatures, where, in particular, the peak assigned to the proposed disordered component would become more symmetrical as vibrational interference becomes more important.

18.
Phys Rev Lett ; 113(15): 153002, 2014 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-25375708

RESUMO

We report on oxygen K-edge soft x-ray emission spectroscopy from a liquid water jet at the Linac Coherent Light Source. We observe significant changes in the spectral content when tuning over a wide range of incident x-ray fluences. In addition the total emission yield decreases at high fluences. These modifications result from reabsorption of x-ray emission by valence-excited molecules generated by the Auger cascade. Our observations have major implications for future x-ray emission studies at intense x-ray sources. We highlight the importance of the x-ray pulse length with respect to the core-hole lifetime.


Assuntos
Modelos Teóricos , Espectrometria por Raios X/métodos , Absorção Fisico-Química , Lasers , Raios X
19.
J Chem Phys ; 140(24): 244506, 2014 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-24985653

RESUMO

X-ray absorption spectroscopy measured in transmission mode was used to study the effect of alkali and halide ions on the hydrogen-bonding (H-bonding) network of water. Cl(-) and Br(-) are shown to have insignificant effect on the structure of water while I(-) locally weakens the H-bonding, as indicated by a sharp increase of the main-edge feature in the x-ray absorption spectra. All alkali cations act as structure-breakers in water, weakening the H-bonding network. The spectral changes are similar to spectra of high density ices where the 2nd shell has collapsed due to a break-down of the tetrahedral structures, although here, around the ions, the breakdown of the local tetrahedrality is rather due to non-directional H-bonding to the larger anions. In addition, results from temperature-dependent x-ray Raman scattering measurements of NaCl solution confirm the H-bond breaking effect of Na(+) and the effect on the liquid as similar to an increase in temperature.


Assuntos
Cloreto de Sódio/química , Soluções/química , Água/química , Álcalis/química , Ligação de Hidrogênio , Íons , Análise Espectral Raman , Espectroscopia por Absorção de Raios X
20.
Sci Rep ; 3: 1980, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23771033

RESUMO

We perform extensive molecular dynamics simulations of the TIP4P/2005 model of water to investigate the origin of the Boson peak reported in experiments on supercooled water in nanoconfined pores, and in hydration water around proteins. We find that the onset of the Boson peak in supercooled bulk water coincides with the crossover to a predominantly low-density-like liquid below the Widom line TW. The frequency and onset temperature of the Boson peak in our simulations of bulk water agree well with the results from experiments on nanoconfined water. Our results suggest that the Boson peak in water is not an exclusive effect of confinement. We further find that, similar to other glass-forming liquids, the vibrational modes corresponding to the Boson peak are spatially extended and are related to transverse phonons found in the parent crystal, here ice Ih.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...