Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Bacteriol ; 206(5): e0008024, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38661374

RESUMO

The hypothesis was tested that a kinetical flow equilibrium of uptake and efflux reactions is responsible for balancing the cellular zinc content. The experiments were done with the metal-resistant bacterium Cupriavidus metallidurans. In pulse-chase experiments, the cells were loaded with radioactive 65Zn and chased with the 100-fold concentration of non-radioactive zinc chloride. In parallel, the cells were loaded with isotope-enriched stable 67Zn and chased with non-enriched zinc to differentiate between zinc pools in the cell. The experiments demonstrated the existence of a kinetical flow equilibrium, resulting in a constant turnover of cell-bound zinc ions. The absence of the metal-binding cytoplasmic components, polyphosphate and glutathione, metal uptake, and metal efflux systems influenced the flow equilibrium. The experiments also revealed that not all zinc uptake and efflux systems are known in C. metallidurans. Cultivation of the cells under zinc-replete, zinc-, and zinc-magnesium-starvation conditions influenced zinc import and export rates. Here, magnesium starvation had a stronger influence compared to zinc starvation. Other metal cations, especially cobalt, affected the cellular zinc pools and zinc export during the chase reaction. In summary, the experiments with 65Zn and 67Zn demonstrated a constant turnover of cell-bound zinc. This indicated that simultaneously occurring import and export reactions in combination with cytoplasmic metal-binding components resulted in a kinetical flow equilibrium that was responsible for the adjustment of the cellular zinc content. IMPORTANCE: Understanding the biochemical action of a single enzyme or transport protein is the pre-requisite to obtain insight into its cellular function but this is only one half of the coin. The other side concerns the question of how central metabolic functions of a cell emerge from the interplay of different proteins and other macromolecules. This paper demonstrates that a flow equilibrium of zinc uptake and efflux reactions is at the core of cellular zinc homeostasis and identifies the most important contributors to this flow equilibrium: the uptake and efflux systems and metal-binding components of the cytoplasm.


Assuntos
Cupriavidus , Zinco , Cupriavidus/metabolismo , Cupriavidus/genética , Zinco/metabolismo , Transporte Biológico , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Magnésio/metabolismo , Cinética
2.
J Bacteriol ; 205(4): e0034322, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36892288

RESUMO

Metal resistance of Cupriavidus metallidurans is based on determinants that were acquired in the past by horizontal gene transfer during evolution. Some of these determinants encode transmembrane metal efflux systems. Expression of most of the respective genes is controlled by two-component regulatory systems composed of a membrane-bound sensor/sensory histidine kinase (HK) and a cytoplasmic, DNA-binding response regulator (RR). Here, we investigated the interplay between the three closely related two-component regulatory systems CzcRS, CzcR2S2, and AgrRS. All three systems regulate the response regulator CzcR, while the RRs AgrR and CzcR2 were not involved in czc regulation. Target promoters were czcNp and czcPp for genes upstream and downstream of the central czc gene region. The two systems together repressed CzcRS-dependent upregulation of czcP-lacZ at low zinc concentrations in the presence of CzcS but activated this signal transmission at higher zinc concentrations. AgrRS and CzcR2S2 interacted to quench CzcRS-mediated expression of czcNp-lacZ and czcPp-lacZ. Together, cross talk between the three two-component regulatory systems enhanced the capabilities of the Czc systems by controlling expression of the additional genes czcN and czcP. IMPORTANCE Bacteria are able to acquire genes encoding resistance to metals and antibiotics by horizontal gene transfer. To bestow an evolutionary advantage on their host cell, new genes must be expressed, and their expression should be regulated so that resistance-mediating proteins are produced only when needed. Newly acquired regulators may interfere with those already present in a host cell. Such an event was studied here in the metal-resistant bacterium Cupriavidus metallidurans. The results demonstrate how regulation by the acquired genes interacts with the host's extant regulatory network. This leads to emergence of a new system level of complexity that optimizes the response of the cell to periplasmic signals.


Assuntos
Proteínas de Bactérias , Cupriavidus , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Metais/metabolismo , Zinco/metabolismo , Cupriavidus/genética , Cupriavidus/metabolismo
3.
Metallomics ; 11(2): 291-316, 2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30681120

RESUMO

The role of extracytoplasmic function (ECF) sigma factors in multiple metal homeostasis of the metallophilic bacterium Cupriavidus metallidurans was studied. RNA sequencing was used to predict 3084 operons in the genome of this bacterium, including 11 for ECF sigma factors, and to measure transcript abundances. Mutants carrying multiple deletions in genes for ECF sigma factors were constructed and characterized. Mutants and parent were challenged with a metal mix, changes in the global gene expression profile and the overall metal content determined. All 11 ECF sigma factors were involved in metal homeostasis. The three ECF sigma factors RpoI, RpoJ and RpoK synchronized iron homeostasis with that of other divalent metal cations, RpoO, RpoL and RpoM magnesium and phosphorous homeostasis with that of zinc and with cadmium resistance. Factors RpoE, CnrH and RpoP controlled the response to nickel and cobalt, RpoQ and RpoR may be assigned to the thiol and sulfide metabolism. All 11 ECF sigma factors overlap in their function and control gene expression involved in metal homeostasis, however, except CnrH, no other ECF sigma factor was needed for up-regulation of 63 predicted operons responding to metal shock, 48 of these encoding metal efflux pumps. Moreover, disturbance of the cellular metal content resulting from missing sigma factors also affected silencing and un-silencing of genomic islands. Together, these data demonstrate on a global and systemic level how a robust network of ECF sigma factors and other regulators allow C. metallidurans to handle a mixture of toxic transition metal cations, which are conditions the bacterium faces in its natural environment. Iron homeostasis is to be maintained at any cost, followed by the necessity for magnesium, phosphorous and zinc homeostasis on the second level, and cobalt plus nickel coming last.


Assuntos
Proteínas de Bactérias/metabolismo , Cupriavidus/metabolismo , Fator sigma/metabolismo , Regulação Bacteriana da Expressão Gênica
4.
Metallomics ; 7(4): 622-31, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25628016

RESUMO

Resistance to high concentration of nickel ions is mediated in Cupriavidus metallidurans by the CnrCBA transenvelope efflux complex. Expression of the cnrCBA genes is regulated by the transmembrane signal transduction complex CnrYXH. Together, the metal sensor CnrX and the transmembrane antisigma factor CnrY control the availability of the extracytoplasmic function sigma factor CnrH. Release of CnrH from sequestration by CnrY at the cytoplasmic side of the membrane depends essentially on the binding of the agonist metal ion Ni(ii) to the periplasmic metal sensor domain of CnrX. CnrH availability leads to transcription initiation at the promoters cnrYp and cnrCp and to the expression of the genes in the cnrYXHCBA nickel resistance determinant. The first steps of signal propagation by CnrX rely on subtle metal-dependent allosteric modifications. To study the nickel-mediated triggering process by CnrX, we have altered selected residues, F66, M123, and Y135, and explored the physiological consequences of these changes with respect to metal resistance, expression of a cnrCBA-lacZ reporter fusion and protein production. M123C- and Y135F-CnrXs have been further characterized in vitro by metal affinity measurements and crystallographic structure analysis. Atomic-resolution structures of metal-bound M123C- and Y135F-CnrXs showed that Ni(ii) binds two of the three canonical conformations identified and that Ni(ii) sensing likely proceeds by conformation selection.


Assuntos
Proteínas de Transporte/química , Cupriavidus/metabolismo , Proteínas de Bactérias/química , Membrana Celular/metabolismo , Cobalto/química , Cristalografia por Raios X , Citoplasma/metabolismo , Íons , Metais/química , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação , Níquel/química , Fenótipo , Multimerização Proteica , Estrutura Terciária de Proteína , Transdução de Sinais
5.
Appl Environ Microbiol ; 80(22): 7071-8, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25192999

RESUMO

Bacteria are rapidly killed on solid copper surfaces, so this material could be useful to limit the spread of multiple-drug-resistant bacteria in hospitals. In Escherichia coli, the DNA-protecting Dps protein and the NADH:ubiquinone oxidoreductase II Ndh were not involved in tolerance to copper ions or survival on solid copper surfaces. Decreased copper tolerance under anaerobic growth conditions in the presence of ascorbate and with melibiose as the carbon source indicated that sodium-dependent symport systems may provide an import route for Cu(I) into the cytoplasm. Glutathione-free ΔcopA ΔgshA double mutants of E. coli were more rapidly inactivated on solid copper surfaces than glutathione-containing wild-type cells. Therefore, while DNA protection by Dps was not required, glutathione was needed to protect the cytoplasm and the DNA against damage mediated by solid copper surfaces, which may explain the differences in the molecular mechanisms of killing between glutathione-containing Gram-negative and glutathione-free Gram-positive bacteria.


Assuntos
Antibacterianos/farmacologia , Cobre/farmacologia , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Glutationa/metabolismo , Meios de Cultura/metabolismo , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Viabilidade Microbiana
6.
Arch Microbiol ; 182(2-3): 109-18, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15340798

RESUMO

The CzcCBA cation-proton-antiporter is the most complicated and efficient heavy-metal resistance system known today and is essential for survival of Ralstonia metallidurans at high cobalt, zinc, or cadmium concentrations. Expression of Czc is tightly controlled by the complex interaction of several regulators. Double- and multiple-deletion studies demonstrated that four regulators encoded downstream of the czcCBA operon, CzcD, CzcS, CzcR and the newly identified CzcE, are involved in, but not essential for metal-dependent induction of czc. These proteins control expression of the czcNICBA region from the promoter czcNp. Northern analysis showed that czcDRS was transcribed as czcDR-specific and czcDRS-specific mRNAs. Transcription of czcE occurred independently of czcDRS transcription and was induced by zinc. CzcE is a periplasmic protein as indicated by phoA fusions. CzcE was purified and identified as a metal-binding protein. These data demonstrate that the transport protein CzcD, the two-component regulatory system CzcR, CzcS, and the periplasmic metal-binding protein CzcE exert metal-dependent control of czcNICBA expression via regulation of czcNp activity.


Assuntos
Farmacorresistência Bacteriana/genética , Regulação Bacteriana da Expressão Gênica , Metais Pesados/farmacologia , Ralstonia/efeitos dos fármacos , Ralstonia/genética , Adaptação Fisiológica/genética , Sequência de Aminoácidos , Antibacterianos/farmacologia , Antiporters/genética , Fusão Gênica Artificial , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Northern Blotting , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Deleção de Genes , Ordem dos Genes , Genes Bacterianos , Genes Reporter , Dados de Sequência Molecular , Óperon , Proteínas Periplásmicas/genética , Proteínas Periplásmicas/isolamento & purificação , Proteínas Periplásmicas/metabolismo , Regiões Promotoras Genéticas , RNA Bacteriano/análise , RNA Mensageiro/análise , Transcrição Gênica , beta-Galactosidase/genética , beta-Galactosidase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...