Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 50(41): 14832-14841, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34596651

RESUMO

The III-V semiconductor GaN is a promising material for photoelectrochemical (PEC) cells, however the large bandgap of 3.45 eV is a considerable hindrance for the absorption of visible light. Therefore, the substitution of small amounts of N anions by isovalent Sb is a promising route to lower the bandgap and thus increase the PEC activity under visible light. Herein we report a new chemical vapor deposition (CVD) process utilizing the precursors bis(N,N'-diisopropyl-2-methyl-amidinato)-methyl gallium (III) and triphenyl antimony (TPSb) for the growth of GaSbxN1-x alloys. X-ray diffraction (XRD) and scanning electron microscopy (SEM) measurements show crystalline and homogeneous thin films at deposition temperatures in the range of 500-800 °C. Rutherford backscattering spectrometry (RBS) combined with nuclear reaction analysis (NRA) shows an incorporation of 0.2-0.7 at% antimony into the alloy, which results in a slight bandgap decrease (up to 0.2 eV) accompanied by enhanced sub-bandgap optical response. While the resulting photoanodes are active under visible light, the external quantum efficiencies remained low. Intriguingly, the best performing films exhibits the lowest charge carrier mobility according to time resolved THz spectroscopy (TRTS) and microwave conductivity (TRMC) measurements, which showed mobilities of up to 1.75 cm2 V-1 s-1 and 1.2 × 10-2 cm2 V-1 s-1, for each timescale, respectively.

2.
Sci Rep ; 10(1): 2553, 2020 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-32054905

RESUMO

Recently, metal nanoparticle surface coatings have been found to significantly enhance the ultra-violet luminescence intensity from ZnO, providing a viable means to mitigate optical losses and improve LED performance. Although there is general agreement that resonantly excited Localized Surface Plasmons (LSPs) in metal nanoparticles can directly couple to excitons in the semiconductor increasing their spontaneous emission rate, the exact mechanisms involved in this phenomenon are currently not fully understood. In this work, LSP-exciton coupling in bulk and nanostructured ZnO coated with a 2 nm Al nanoparticle layer is investigated using correlative photoluminescence and depth-resolved cathodoluminescence and time-resolved photoluminescence spectroscopy. Temperature-resolved cathodoluminescence and photoluminescence measurements from 10 K to 250 K show free exciton (FX) emission enhancement factors up to 12x at 80 K, and reveal that the FX couple more efficiently to the LSPs compared to the localized donor-bound excitons. A strong polarization dependence between the LSPs and FX is observed where FX transitions are more strongly enhanced when polarized in the same direction as the electric field of the incident excitation, which is different for laser and electron beam sources. This result indicates that selective enhancement of the excitonic emission peaks in the ZnO coated with Al nanoparticles can be achieved by choosing the appropriate ZnO substrate orientation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...