Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 168
Filtrar
1.
J Allergy Clin Immunol ; 154(1): 143-156, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38185418

RESUMO

BACKGROUND: Dedicator of cytokinesis 8 (DOCK8)-deficient patients have severe eczema, elevated IgE, and eosinophilia, features of atopic dermatitis (AD). OBJECTIVE: We sought to understand the mechanisms of eczema in DOCK8 deficiency. METHODS: Skin biopsy samples were characterized by histology, immunofluorescence microscopy, and gene expression. Skin barrier function was measured by transepidermal water loss. Allergic skin inflammation was elicited in mice by epicutaneous sensitization with ovalbumin (OVA) or cutaneous application of Staphylococcus aureus. RESULTS: Skin lesions of DOCK8-deficient patients exhibited type 2 inflammation, and the patients' skin was colonized by Saureus, as in AD. Unlike in AD, DOCK8-deficient patients had a reduced FOXP3:CD4 ratio in their skin lesions, and their skin barrier function was intrinsically intact. Dock8-/- mice exhibited reduced numbers of cutaneous T regulatory (Treg) cells and a normal skin barrier. Dock8-/- and mice with an inducible Dock8 deletion in Treg cells exhibited increased allergic skin inflammation after epicutaneous sensitization with OVA. DOCK8 was shown to be important for Treg cell stability at sites of allergic inflammation and for the generation, survival, and suppressive activity of inducible Treg cells. Adoptive transfer of wild-type, but not DOCK8-deficient, OVA-specific, inducible Treg cells suppressed allergic inflammation in OVA-sensitized skin of Dock8-/- mice. These mice developed severe allergic skin inflammation and elevated serum IgE levels after topical exposure to Saureus. Both were attenuated after adoptive transfer of WT but not DOCK8-deficient Treg cells. CONCLUSION: Treg cell dysfunction increases susceptibility to allergic skin inflammation in DOCK8 deficiency and synergizes with cutaneous exposure to Saureus to drive eczema in DOCK8 deficiency.


Assuntos
Eczema , Fatores de Troca do Nucleotídeo Guanina , Camundongos Knockout , Pele , Staphylococcus aureus , Linfócitos T Reguladores , Animais , Linfócitos T Reguladores/imunologia , Fatores de Troca do Nucleotídeo Guanina/deficiência , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/imunologia , Eczema/imunologia , Staphylococcus aureus/imunologia , Humanos , Camundongos , Pele/imunologia , Pele/patologia , Feminino , Masculino , Camundongos Endogâmicos C57BL , Dermatite Atópica/imunologia
2.
Microbiol Spectr ; 11(6): e0289823, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37937984

RESUMO

IMPORTANCE: Staphylococcus aureus causes a myriad of human diseases, ranging from relatively mild soft tissue infections to highly fatal pneumonia, sepsis, and toxic shock syndrome. The organisms primarily cause diseases across mucosal and skin barriers. In order to facilitate penetration of barriers, S. aureus causes harmful inflammation by inducing chemokines from epithelial cells. We report the cloning and characterization of a novel secreted S. aureus protein that induces chemokine production from epithelial cells as its major demonstrable function. This secreted protein possibly helps S. aureus and its secreted proteins to penetrate host barriers.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Humanos , Staphylococcus aureus/metabolismo , Quimiocinas/metabolismo , Células Epiteliais/metabolismo , Clonagem Molecular
3.
MicroPubl Biol ; 20232023.
Artigo em Inglês | MEDLINE | ID: mdl-37954520

RESUMO

Glycerol Monolaurate (GML) is a naturally occurring fatty acid monoester with antimicrobial properties. Francisella tularensis is an agent of bioterrorism known for its unique lipopolysaccharide structure and low immunogenicity. Here we assessed whether exogenous GML would inhibit the growth of Francisella novicida . GML potently impeded Francisella growth and survival in vitro . To appraise the metabolic response to infection, we used GC-MS to survey the metabolome, and surprisingly, observed intracellular GML production following Francisella infection. Notably, the ubiquitin-like protein ISG15 was necessary for increased GML levels induced by bacterial infection, and enhanced ISG15 conjugation correlated with GML levels following serum starvation.

4.
Microbiol Spectr ; : e0168423, 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37737609

RESUMO

Individuals with atopic dermatitis (AD) are highly colonized by Staphylococcus aureus and are more susceptible to severe viral complications. We hypothesized that S. aureus secreted virulence factors may alter keratinocyte biology to enhance viral susceptibility through disruption of the skin barrier, impaired keratinocyte differentiation, and/or inflammation. To address this hypothesis, human keratinocytes were exposed to conditioned media from multiple S. aureus strains that vary in virulence factor production (USA300, HG003, and RN4220) or select purified virulence factors. We have identified the S. aureus enterotoxin-like superantigen SElQ, as a virulence factor of interest, since it is highly produced by USA300 and was detected on the skin of 53% of AD subjects (n = 72) in a study conducted by our group. Treatment with USA300 conditioned media or purified SElQ resulted in a significant increase in keratinocyte susceptibility to infection with vaccinia virus, and also significantly decreased barrier function. Importantly, we have previously demonstrated that keratinocyte differentiation influences susceptibility to viral infection, and our qPCR observations indicated that USA300 S. aureus and SElQ alter differentiation in keratinocytes. CRISPR/Cas9 was used to knock out CD40, a potential enterotoxin receptor on epithelial cells. We found that CD40 expression on keratinocytes was not completely necessary for SElQ-mediated responses, as measured by proinflammatory cytokine expression and barrier function. Together, these findings support that select S. aureus virulence factors, particularly SElQ, enhance the susceptibility of epidermal cells to viral infection, which may contribute to the increased cutaneous infections observed in individuals with AD. IMPORTANCE Staphylococcus aureus skin colonization and infection are frequently observed in individuals with atopic dermatitis. Many S. aureus strains belong to the clonal group USA300, and these strains produce superantigens including the staphylococcal enterotoxin-like Q (SElQ). Our studies highlight that SElQ may play a key role by altering keratinocyte differentiation and reducing barrier function; collectively, this may explain the AD-specific enhanced infection risk to cutaneous viruses. It is unclear what receptor mediates SElQ's effects on keratinocytes. We have shown that one putative surface receptor, CD40, was not critical for its effects on proinflammatory cytokine production or barrier function.

5.
Microbiol Spectr ; 11(4): e0173523, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37404182

RESUMO

Staphylococcus aureus is a human pathogen with many infections originating on mucosal surfaces. One common group of S. aureus is the USA200 (CC30) clonal group, which produces toxic shock syndrome toxin-1 (TSST-1). Many USA200 infections occur on mucosal surfaces, particularly in the vagina and gastrointestinal tract. This allows these organisms to cause cases of menstrual TSS and enterocolitis. The current study examined the ability of two lactobacilli, Lactobacillus acidophilus strain LA-14 and Lacticaseibacillus rhamnosus strain HN001, for their ability to inhibit the growth of TSST-1 positive S. aureus, the production of TSST-1, and the ability of TSST-1 to induce pro-inflammatory chemokines from human vaginal epithelial cells (HVECs). In competition growth experiments, L. rhamnosus did not affect the growth of TSS S. aureus but did inhibit the production of TSST-1; this effect was partially due to acidification of the growth medium. L. acidophilus was both bactericidal and prevented the production of TSST-1 by S. aureus. This effect appeared to be partially due to acidification of the growth medium, production of H2O2, and production of other antibacterial molecules. When both organisms were incubated with S. aureus, the effect of L. acidophilus LA-14 dominated. In in vitro experiments with HVECs, neither lactobacillus induced significant production of the chemokine interleukin-8, whereas TSST-1 did induce production of the chemokine. When the lactobacilli were incubated with HVECs in the presence of TSST-1, the lactobacilli reduced chemokine production. These data suggest that these two bacteria in probiotics could reduce the incidence of menstrual and enterocolitis-associated TSS. IMPORTANCE Toxic shock syndrome (TSS) Staphylococcus aureus commonly colonize mucosal surfaces, giving them the ability to cause TSS through the action of TSS toxin-1 (TSST-1). This study examined the ability of two probiotic lactobacilli to inhibit S. aureus growth and TSST-1 production, and the reduction of pro-inflammatory chemokine production by TSST-1. Lacticaseibacillus rhamnosus strain HN001 inhibited TSST-1 production due to acid production but did not affect S. aureus growth. Lactobacillus acidophilus strain LA-14 was bactericidal against S. aureus, partially due to acid and H2O2 production, and consequently also inhibited TSST-1 production. Neither lactobacillus induced the production of pro-inflammatory chemokines by human vaginal epithelial cells, and both inhibited chemokine production by TSST-1. These data suggest that the two probiotics could reduce the incidence of mucosa-associated TSS, including menstrual TSS and cases originating as enterocolitis.


Assuntos
Probióticos , Choque Séptico , Infecções Estafilocócicas , Feminino , Humanos , Staphylococcus aureus , Choque Séptico/prevenção & controle , Choque Séptico/microbiologia , Lactobacillus/fisiologia , Peróxido de Hidrogênio/farmacologia , Enterotoxinas , Quimiocinas , Infecções Estafilocócicas/prevenção & controle , Infecções Estafilocócicas/microbiologia
6.
J Allergy Clin Immunol ; 152(5): 1179-1195, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37315812

RESUMO

BACKGROUND: Atopic dermatitis (AD) is an inflammatory disorder characterized by dominant type 2 inflammation leading to chronic pruritic skin lesions, allergic comorbidities, and Staphylococcus aureus skin colonization and infections. S aureus is thought to play a role in AD severity. OBJECTIVES: This study characterized the changes in the host-microbial interface in subjects with AD following type 2 blockade with dupilumab. METHODS: Participants (n = 71) with moderate-severe AD were enrolled in a randomized (dupilumab vs placebo; 2:1), double-blind study at Atopic Dermatitis Research Network centers. Bioassays were performed at multiple time points: S aureus and virulence factor quantification, 16s ribosomal RNA microbiome, serum biomarkers, skin transcriptomic analyses, and peripheral blood T-cell phenotyping. RESULTS: At baseline, 100% of participants were S aureus colonized on the skin surface. Dupilumab treatment resulted in significant reductions in S aureus after only 3 days (compared to placebo), which was 11 days before clinical improvement. Participants with the greatest S aureus reductions had the best clinical outcomes, and these reductions correlated with reductions in serum CCL17 and disease severity. Reductions (10-fold) in S aureus cytotoxins (day 7), perturbations in TH17-cell subsets (day 14), and increased expression of genes relevant for IL-17, neutrophil, and complement pathways (day 7) were also observed. CONCLUSIONS: Blockade of IL-4 and IL-13 signaling, very rapidly (day 3) reduces S aureus abundance in subjects with AD, and this reduction correlates with reductions in the type 2 biomarker, CCL17, and measures of AD severity (excluding itch). Immunoprofiling and/or transcriptomics suggest a role for TH17 cells, neutrophils, and complement activation as potential mechanisms to explain these findings.


Assuntos
Dermatite Atópica , Infecções Estafilocócicas , Humanos , Dermatite Atópica/genética , Staphylococcus aureus , Anticorpos Monoclonais Humanizados/uso terapêutico , Pele/metabolismo , Infecções Estafilocócicas/tratamento farmacológico , Índice de Gravidade de Doença , Resultado do Tratamento
7.
MicroPubl Biol ; 20232023.
Artigo em Inglês | MEDLINE | ID: mdl-37179971

RESUMO

Group A streptococcal pyrogenic exotoxins (SPEs A, B, and C) are superantigens. SPE A shares high sequence similarity with Staphylococcus aureus enterotoxins (SEs) B and C. Since SPE A is bacteriophage-encoded, we hypothesized that its gene ( speA ) was acquired from S. aureus . speA , when cloned into S. aureus , was stably expressed, its protein resistant to proteases, and the gene under accessory gene regulator control. speA was acquired by streptococci from cross-species transduction. speB was not expressed in S. aureus. SPE C was degraded by staphylococcal proteases. The genes speB and speC were not recently acquired from S. aureus.

8.
BMC Pediatr ; 23(1): 108, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36882717

RESUMO

BACKGROUND: We describe a case of a toxic shock-like syndrome in a child, which was associated with Staphylococcus epidermidis instead of Staphylococcus aureus or Streptococcus pyogenes, the usual causes of toxic shock syndrome. CASE PRESENTATION: The patient was an 8-year-old boy who developed a toxic shock syndrome-like illness, including fever, hypotension, and rash. The Staphylococcus epidermidis isolate was cultured from urine, but this organism was unavailable for toxin testing. Multiple blood cultures were negative. Instead, a highly novel assay was used on acute plasma from the patient which demonstrated the presence of the genes for superantigens, staphylococcal enterotoxins A, C, D, and E. Superantigens are the known causes of toxic shock syndrome. CONCLUSIONS: Our study suggests strongly that Staphylococcus epidermidis was causing the TSS symptoms through the known Staphylococcus aureus superantigens. It is unknown how many other such patients exist; this should be explored. Of great importance is that PCR performed directly on blood plasma in the absence of microbial isolation could be used to demonstrate superantigen genes.


Assuntos
Exantema , Choque Séptico , Infecções Estafilocócicas , Masculino , Criança , Humanos , Enterotoxinas/genética , Staphylococcus epidermidis , Superantígenos/genética , Infecções Estafilocócicas/complicações , Infecções Estafilocócicas/diagnóstico , Staphylococcus aureus
9.
Microbiol Spectr ; : e0444622, 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36815779

RESUMO

Three mutants individually of both staphylococcal enterotoxins B and C were prepared by site-specific mutagenesis of enterotoxin amino acids that contact host T lymphocyte immune cell receptor sites (N23A, Q210A, and N23A/Q210A); these amino acids are shared between the two enterotoxins, and mutations reduce the interaction with the variable part of the ß-chain of the T lymphocyte receptor. The mutant proteins, as expressed in Staphylococcus aureus RN4220, lacked biological toxicity as measured by the loss of (i) stimulation of rabbit splenocyte proliferation, (ii) pyrogenicity, and (iii) the ability to enhance the lethality of endotoxin shock, compared to wild-type enterotoxins. In addition, the mutants were able to vaccinate rabbits against pyrogenicity, the enhancement of endotoxin shock, and lethality in a pneumonia model when animals were challenged with methicillin-resistant S. aureus. Three vaccine injections (one primary and two boosters) protected rabbits for at least 3.5 months postvaccination when challenged with wild-type enterotoxins (last time point tested). These mutant proteins have the potential to function as toxoid vaccines against these two causes of nonmenstrual toxic shock syndrome (TSS). IMPORTANCE Toxic shock syndrome toxin 1 (TSST-1) and staphylococcal enterotoxins B and C cause the majority of cases of staphylococcal toxic shock syndrome. Previously, vaccine toxoids of TSST-1 have been prepared. In this study, vaccine toxoids of enterotoxins B and C were prepared. The toxoids lost biological toxicity but were able to vaccinate rabbits against lethal TSS.

10.
mSphere ; 8(1): e0057622, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36598227

RESUMO

Innate immune molecules, including antimicrobial peptides (for example, defensins) and lysozyme, function to delay or prevent bacterial infections. These molecules are commonly found on mucosal and skin surfaces. Staphylococcus aureus is a common pathogen and causes millions of infections annually. It is well known that innate immune molecules, such as defensins and lysozyme, either poorly inhibit or do not inhibit the growth of S. aureus. Our current studies show that the α-defensin human neutrophil α-defensin-1 (HNP-1) and lysozyme inhibit exotoxin production, both hemolysins and superantigens, which are required for S. aureus infection. HNP-1 inhibited exotoxin production at concentrations as low as 0.001 µg/mL. Lysozyme inhibited exotoxin production at 0.05 to 0.5 µg/mL. Both HNP-1 and lysozyme functioned through at least one two-component system (SrrA/B). The ß-defensin human ß-defensin 1 (HBD-1) inhibited hemolysin but not superantigen production. The cation chelator S100A8/A9 (calprotectin), compared to EDTA, was tested for the ability to inhibit exotoxin production. EDTA at high concentrations inhibited exotoxin production; these were the same concentrations that interfered with staphylococcal growth. S100A8/A9 at the highest concentration tested (10 µg/mL) had no effect on S. aureus growth but enhanced exotoxin production. Lower concentrations had no effect on growth or exotoxin production. Lysostaphin is regularly used to lyse S. aureus. The lytic concentrations of lysostaphin were the only concentrations that also inhibited growth and exotoxin production. Our studies demonstrate that a major activity of innate defensin peptides and lysozyme is inhibition of staphylococcal exotoxin production but not inhibition of growth. IMPORTANCE Staphylococcus aureus causes large numbers of both relatively benign and serious human infections, which are mediated in large part by the organisms' secreted exotoxins. Since 1921, it has been known that lysozyme and, as shown later in the 1900s, other innate immune peptides, including human neutrophil α-defensin-1 (HNP-1) and human ß-defensin 1 (HBD-1), are either not antistaphylococcal or are only weakly inhibitory to growth. Our study confirms those findings but, importantly, shows that at subgrowth inhibitory concentrations, these positively charged innate immune peptides inhibit exotoxin production, including both hemolysins and the superantigen toxic shock syndrome toxin-1. The data show that the principal activity of innate immune peptides in the host is likely to be inhibition of exotoxin production required for staphylococcal mucosal or skin colonization rather than growth inhibition.


Assuntos
Peptídeos Catiônicos Antimicrobianos , Exotoxinas , Staphylococcus aureus Resistente à Meticilina , Staphylococcus aureus , Humanos , alfa-Defensinas/farmacologia , beta-Defensinas/farmacologia , Ácido Edético/farmacologia , Exotoxinas/metabolismo , Proteínas Hemolisinas/farmacologia , Lisostafina/farmacologia , Muramidase/farmacologia , Staphylococcus , Staphylococcus aureus/metabolismo , Peptídeos Catiônicos Antimicrobianos/farmacologia
11.
Microbiol Spectr ; 10(2): e0010622, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35297656

RESUMO

Many bacterial and fungal pathogens cause disease across mucosal surfaces, and to a lesser extent through skin surfaces. Pathogens that potentially cause disease vaginally across epithelial cells include Staphylococcus aureus, group A and B streptococci, Escherichia coli, Neisseria gonorrhoeae, and Candida albicans. We have previously shown that staphylococcal and streptococcal superantigens induce inflammatory chemokines from vaginal epithelial cells through the immune costimulatory molecule CD40 through use of a CRISPR cas9 knockout mutant and complemented epithelial cell line. In this study, we show that the potential vaginal pathogens S. aureus, group A and B streptococci, E. coli, an Enterococcus faecalis strain, and C. albicans in part use CD40 to stimulate interleukin-8 (IL-8) production from human vaginal epithelial cells. In contrast, N. gonorrhoeae does not appear to use CD40 to signal IL-8 production. Normal flora Lactobacillus crispatus and an Enterococcus faecalis strain that produces reutericyclin do not induce IL-8. These data indicate that many potential pathogens, but no normal commensals, induce IL-8 to help disrupt the human vaginal epithelial barrier through CD40, thus providing a potential therapeutic target for drug development. IMPORTANCE Most bacterial and fungal pathogens cause disease across mucosal, and to a lesser extent, skin barriers with the help of induced chemokines from epithelial cells. In this study, we showed that potential vaginal pathogens Staphylococcus aureus, group A and B streptococci, some Enterococcus faecalis strains, Escherichia coli, and Candida albicans use the immune costimulatory molecule CD40 to induce the chemokine interleukin-8 production. In contrast, Neisseria gonorrhoeae does not use CD40 to stimulate interleukin-8. Normal flora lactobacilli and at least one E. faecalis strain do not induce interleukin-8.


Assuntos
Infecções por Escherichia coli , Infecções Estafilocócicas , Candida albicans/metabolismo , Quimiocinas/metabolismo , Células Epiteliais/microbiologia , Escherichia coli/metabolismo , Feminino , Humanos , Interleucina-8/metabolismo , Staphylococcus aureus/metabolismo , Vagina/microbiologia
12.
J Invest Dermatol ; 142(4): 1032-1039.e6, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34606884

RESUMO

A potential role of Staphylococcus aureus in bullous pemphigoid was explored by examining the colonization rate in patients with new-onset disease compared with that in age- and sex-matched controls. S. aureus colonization was observed in 85% of bullous pemphigoid lesions, 3-6-fold higher than the nares or unaffected skin from the same patients (P ≤ 0.003) and 6-fold higher than the nares or skin of controls (P ≤ 0.0015). Furthermore, 96% of the lesional isolates produced the toxic shock syndrome toxin-1 superantigen, and most of these additionally exhibited homogeneous expression of the enterotoxin gene cluster toxins. Toxic shock syndrome toxin-1‒neutralizing antibodies were not protective against colonization. However, S. aureus colonization was not observed in patients who had recently received antibiotics, and the addition of antibiotics with staphylococcal coverage eliminated S. aureus and resulted in clinical improvement. This study shows that toxic shock syndrome toxin-1‒positive S. aureus is prevalent in bullous pemphigoid lesions and suggests that early implementation of antibiotics may be of benefit. Furthermore, our results suggest that S. aureus colonization could provide a source of infection in patients with bullous pemphigoid, particularly in the setting of high-dose immunosuppression.


Assuntos
Penfigoide Bolhoso , Infecções Estafilocócicas , Antibacterianos/uso terapêutico , Toxinas Bacterianas , Enterotoxinas/toxicidade , Humanos , Penfigoide Bolhoso/tratamento farmacológico , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/patologia , Staphylococcus aureus/metabolismo , Superantígenos/genética
13.
mSphere ; 6(4): e0060821, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34319127

RESUMO

Atopic dermatitis (AD) is a condition affecting 30 million persons in the United States. AD patients are heavily infected with Staphylococcus aureus on the skin. A particularly severe form of AD is eczema herpeticum (ADEH), where the patients' AD is complicated by S. aureus and herpes simplex virus (HSV) infection. This study examined the S. aureus strains from 15 ADEH patients, provided blinded, and showed a high association of ADEH with strains that produce toxic shock syndrome toxin-1 (TSST-1; 73%) compared to 10% production by typical AD isolates from patients without EH and those from another unrelated condition, cystic fibrosis. The ADEH isolates produced the superantigens associated with TSS (TSST-1 and staphylococcal enterotoxins A, B, and C). This association may in part explain the potential severity of ADEH. We also examined the effect of TSST-1 and HSV-1 on human epithelial cells and keratinocytes. TSST-1 used CD40 as its receptor on epithelial cells, and HSV-1 either directly or indirectly interacted with CD40. The consequence of these interactions was chemokine production, which is capable of causing harmful inflammation, with epidermal/keratinocyte barrier disruption. Human epithelial cells treated first with TSST-1 and then HSV-1 resulted in enhanced chemokine production. Finally, we showed that TSST-1 modestly increased HSV-1 replication but did not increase viral plaque size. Our data suggest that ADEH is associated with production of the major TSS-associated superantigens, together with HSV reactivation. The superantigens plus HSV may damage the skin barrier by causing harmful inflammation, thereby leading to increased symptoms. IMPORTANCE Atopic dermatitis (eczema, AD) with concurrent herpes simplex virus infection (eczema herpeticum, ADEH) is a severe form of AD. We show that ADEH patients are colonized with Staphylococcus aureus that primarily produces the superantigen toxic shock syndrome toxin-1 (TSST-1); however, significantly but to a lesser extent the superantigens staphylococcal enterotoxins A, B, and C are also represented in ADEH. Our studies showed that TSST-1 uses the immune costimulatory molecule CD40 as its epithelial cell receptor. Herpes simplex virus (HSV) also interacted directly or indirectly with CD40 on epithelial cells. Treatment of epithelial cells with TSST-1 and then HSV-1 resulted in enhanced chemokine production. We propose that this combination of exposures (TSST-1 and then HSV) leads to opening of epithelial and skin barriers to facilitate potentially serious ADEH.


Assuntos
Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Enterotoxinas/genética , Enterotoxinas/metabolismo , Herpesvirus Humano 1/metabolismo , Erupção Variceliforme de Kaposi/microbiologia , Staphylococcus aureus/patogenicidade , Superantígenos/genética , Superantígenos/metabolismo , Toxinas Bacterianas/imunologia , Toxinas Bacterianas/farmacologia , Antígenos CD40/imunologia , Quimiocinas/imunologia , Enterotoxinas/imunologia , Enterotoxinas/farmacologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/imunologia , Células Epiteliais/microbiologia , Células Epiteliais/virologia , Células HaCaT , Herpesvirus Humano 1/imunologia , Humanos , Queratinócitos/efeitos dos fármacos , Queratinócitos/imunologia , Queratinócitos/microbiologia , Queratinócitos/virologia , Staphylococcus aureus/metabolismo , Superantígenos/imunologia , Superantígenos/farmacologia
14.
mSphere ; 6(1)2021 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-33504664

RESUMO

Staphylococcus aureus causes significant infections, responsible for toxic shock syndrome (TSS), hemorrhagic pneumonia, and many other infections. S. aureus secretes virulence factors, which include superantigens such as staphylococcal enterotoxins (SEs). We examined differences in immunobiological activities and disease associations among the four human SEC subtypes. We sequenced the sec gene from 35 human isolates to determine SEC subtypes. Upon finding differences in disease association, we used a [3H]thymidine uptake assay to examine SEC-induced superantigenicity. We also employed a rabbit model of SEC-induced TSS. SEC-2 and SEC-3 were associated with menstrual TSS and vaginal isolates from healthy women, whereas SEC-4 was produced by USA400 isolates causing purpura fulminans and hemorrhagic pneumonia. SEC subtypes differed in potency in a TSS rabbit model and in superantigenicity. There was no difference in superantigenicity when tested on human peripheral blood mononuclear cells. Despite differences, all SECs reacted with polyclonal antibodies raised against the other SEC subtypes. The associations of SEC subtypes with different infections suggest that S. aureus produces virulence factors according to host niches.IMPORTANCE Staphylococcal enterotoxin C has four subtypes that cause human diseases, designated SEC-1 to -4. This study shows that SEC-2 and SEC-3 are the most toxic subtypes in a rabbit model and are associated with human vaginal infections or colonization in association with another superantigen, toxic shock syndrome toxin 1. SEC-4 is associated with purpura fulminans and hemorrhagic pneumonia. SEC-1 is uncommon. The data suggest that there is some selective pressure for the SEC subtypes to be associated with certain human niches.


Assuntos
Enterotoxinas/classificação , Infecções Estafilocócicas/etiologia , Animais , Enterotoxinas/toxicidade , Feminino , Humanos , Ativação Linfocitária , Coelhos , Choque Séptico/etiologia , Infecções Estafilocócicas/imunologia , Vagina/microbiologia
15.
FEBS J ; 288(6): 1771-1777, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32770775

RESUMO

Kawasaki syndrome (KS) is an acute vasculitis in children complicated by the development of heart disease. Despite its description over 50 years ago, the etiology of coronary artery disease in KS is unknown. High dose intravenous immunoglobulin is the most effective approach to reduce cardiovascular complications. It remains unclear why patients with KS develop coronary artery aneurysms. A subset of patients is resistant to immunoglobulin therapy. Given the heterogeneity of clinical features, variability of history, and therapeutic response, KS may be a cluster of phenotypes triggered by multiple infectious agents and influenced by various environmental, genetic, and immunologic responses. The cause of KS is unknown, and a diagnostic test remains lacking. A better understanding of mechanisms leading to acute KS would contribute to a more precision medicine approach for this complex disease. In the current viewpoint, we make the case for microbial superantigens as important causes of KS.


Assuntos
Toxinas Bacterianas/imunologia , Doença da Artéria Coronariana/imunologia , Enterotoxinas/imunologia , Imunoglobulinas Intravenosas/uso terapêutico , Síndrome de Linfonodos Mucocutâneos/tratamento farmacológico , Síndrome de Linfonodos Mucocutâneos/imunologia , Superantígenos/imunologia , Criança , Doença da Artéria Coronariana/complicações , Humanos , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/imunologia , Síndrome de Linfonodos Mucocutâneos/complicações , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia
16.
mSphere ; 5(5)2020 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-33028686

RESUMO

Staphylococcus aureus and Streptococcus pyogenes are significant human pathogens, causing infections at multiple body sites, including across the skin. Both are organisms that cause human diseases and secrete superantigens, including toxic shock syndrome toxin-1 (TSST-1), staphylococcal enterotoxins (SEs), and streptococcal pyrogenic exotoxins (SPEs). On the skin, human keratinocytes represent the first cell type to encounter these superantigens. We employed transcriptome sequencing (RNA-seq) to evaluate the human primary keratinocyte response to both TSST-1 and staphylococcal enterotoxin B (SEB) in triplicate analyses. Both superantigens caused large numbers of genes to be up- and downregulated. The genes that exhibited 2-fold differential gene expression compared to vehicle-treated cells, whether up- or downregulated, totaled 5,773 for TSST-1 and 4,320 for SEB. Of these, 4,482 were significantly upregulated by exposure of keratinocytes to TSST-1, whereas 1,291 were downregulated. For SEB, expression levels of 3,785 genes were upregulated, whereas those of 535 were downregulated. There was the expected high overlap in both upregulation (3,412 genes) and downregulation (400 genes). Significantly upregulated genes included those associated with chemokine production, with the possibility of stimulation of inflammation. We also tested an immortalized human keratinocyte line, from a different donor, for chemokine response to four superantigens. TSST-1 and SEB caused production of interleukin-8 (IL-8), MIP-3α, and IL-33. SPEA and SPEC were evaluated for stimulation of expression of IL-8 as a representative chemokine; both stimulated production of IL-8.IMPORTANCEStaphylococcus aureus and Streptococcus pyogenes are common human pathogens, causing infections that include the skin. Both pathogens produce a family of secreted toxins called superantigens, which have been shown to be important in human diseases. The first cell types encountered by superantigens on skin are keratinocytes. Our studies demonstrated, that the human keratinocyte pathway, among other pathways, responds to superantigens with production of chemokines, setting off inflammation. This inflammatory response may be harmful, facilitating opening of the skin barrier.


Assuntos
Queratinócitos/efeitos dos fármacos , Queratinócitos/imunologia , Superantígenos/imunologia , Superantígenos/farmacologia , Linhagem Celular Transformada , Células Cultivadas , Citocinas/genética , Citocinas/imunologia , Enterotoxinas/farmacologia , Perfilação da Expressão Gênica , Humanos , Inflamação , RNA-Seq , Staphylococcus aureus/química , Staphylococcus aureus/imunologia , Streptococcus pyogenes/química , Streptococcus pyogenes/imunologia
17.
mSphere ; 5(4)2020 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-32727862

RESUMO

Staphylococcus aureus is a highly significant infection problem in health care centers, particularly after surgery. It has been shown that nearly 80% of S. aureus infections following surgery are the same as those in the anterior nares of patients, suggesting that the anterior nares is the source of the infection strain. This has led to the use of mupirocin ointment being applied nasally to reduce infections; mupirocin resistance is being observed. This study was undertaken to determine whether gel composed of 5% glycerol monolaurate solubilized in a glycol-based, nonaqueous gel (5% GML gel) could be used as an alternative. In our study, 40 healthy human volunteers swabbed their anterior nares for 3 days with the 5% GML gel. Prior to swabbing and 8 to 12 h after swabbing, S. aureus and coagulase-negative staphylococcal CFU per milliliter were determined by plating the swabs on mannitol salt agar. Fourteen of the volunteers had S. aureus in their nares prior to 5% GML gel treatment, most persons with the organisms present in both nares; five had pure cultures of S. aureus All participants without pure culture of S. aureus were cocolonized with S. aureus and coagulase-negative staphylococci. Five of the S. aureus strains produced the superantigens commonly associated with toxic shock syndrome, though none of the participants became ill. For both S. aureus and coagulase-negative staphylococci, the 5% GML gel treatment resulted in a 3-log-unit reduction in microorganisms. For S. aureus, the reduction persisted for 2 or 3 days.IMPORTANCE In this microflora study, we show that a 5% glycerol monolaurate nonaqueous gel is safe for use in the anterior nares. The gel was effective in reducing Staphylococcus aureus nasally, a highly significant hospital-associated pathogen. The gel may be a useful alternative or additive to mupirocin ointment for nasal use prior to surgery, noting that 80% of hospital-associated S. aureus infections are due to the same organism found in the nose. This gel also kills all enveloped viruses tested and should be considered for studies to reduce infection and transmission of coronaviruses and influenza viruses.


Assuntos
Antibacterianos/farmacologia , Portador Sadio/microbiologia , Lauratos/farmacologia , Monoglicerídeos/farmacologia , Cavidade Nasal/diagnóstico por imagem , Infecções Estafilocócicas/tratamento farmacológico , Adolescente , Adulto , Contagem de Colônia Microbiana , Géis/química , Géis/farmacologia , Voluntários Saudáveis , Humanos , Pessoa de Meia-Idade , Mupirocina/farmacologia , Cavidade Nasal/microbiologia , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/efeitos dos fármacos , Adulto Jovem
18.
EClinicalMedicine ; 21: 100316, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32382715
19.
Proc Natl Acad Sci U S A ; 117(20): 10989-10999, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32354997

RESUMO

Staphylococcus aureus infections can lead to diseases that range from localized skin abscess to life-threatening toxic shock syndrome. The SrrAB two-component system (TCS) is a global regulator of S. aureus virulence and critical for survival under environmental conditions such as hypoxic, oxidative, and nitrosative stress found at sites of infection. Despite the critical role of SrrAB in S. aureus pathogenicity, the mechanism by which the SrrAB TCS senses and responds to these environmental signals remains unknown. Bioinformatics analysis showed that the SrrB histidine kinase contains several domains, including an extracellular Cache domain and a cytoplasmic HAMP-PAS-DHp-CA region. Here, we show that the PAS domain regulates both kinase and phosphatase enzyme activity of SrrB and present the structure of the DHp-CA catalytic core. Importantly, this structure shows a unique intramolecular cysteine disulfide bond in the ATP-binding domain that significantly affects autophosphorylation kinetics. In vitro data show that the redox state of the disulfide bond affects S. aureus biofilm formation and toxic shock syndrome toxin-1 production. Moreover, with the use of the rabbit infective endocarditis model, we demonstrate that the disulfide bond is a critical regulatory element of SrrB function during S. aureus infection. Our data support a model whereby the disulfide bond and PAS domain of SrrB sense and respond to the cellular redox environment to regulate S. aureus survival and pathogenesis.


Assuntos
Proteínas de Bactérias/metabolismo , Cisteína/metabolismo , Proteínas Repressoras/metabolismo , Staphylococcus aureus/metabolismo , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Toxinas Bacterianas , Sequência de Bases , Biofilmes , Domínio Catalítico , Modelos Animais de Doenças , Endocardite , Enterotoxinas , Feminino , Regulação Bacteriana da Expressão Gênica , Histidina Quinase/metabolismo , Masculino , Modelos Moleculares , Mutação , Oxirredução , Domínios Proteicos , Coelhos , Proteínas Repressoras/química , Proteínas Repressoras/genética , Sepse , Infecções Estafilocócicas/metabolismo , Staphylococcus aureus/genética , Staphylococcus aureus/patogenicidade , Superantígenos , Thermotoga maritima , Virulência/genética , Virulência/fisiologia
20.
J Low Genit Tract Dis ; 24(3): 277-283, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32379102

RESUMO

OBJECTIVE: The aim of the study was to test the hypothesis that 5% monolaurin vaginal gel, a naturally occurring monoglyceride shown to have antimicrobial effects on vaginal pathogens without affecting Lactobacillus species, cures bacterial vaginosis (BV). MATERIALS AND METHODS: This was a multicenter, double-blinded, randomized controlled trial comparing 5% monolaurin vaginal gel to vehicle placebo (glycol-based) gel administered twice daily for 3 days. Nonpregnant, nonbreastfeeding women between ages 18 and 50 years were recruited and BV confirmed. Primary outcome was clinical cure assessed by resolution of all 4 Amsel criteria. Secondary outcomes included safety and tolerability assessed by solicited urogenital adverse events. Exploratory outcomes included colony counts for vaginal microbes associated with healthy vaginal flora (Lactobacillus species) and the dysbiosis often associated with BV (Gardnerella species and Mobiluncus species). A 2:1 test article to placebo randomization scheme was planned. RESULTS: One hundred nine women participated with 73 randomized to the treatment arm and 36 to the placebo arm. There was no significant difference in clinical cure for BV (p = .42) with 17% of the monolaurin group and 25% of the placebo group achieving clinical cure. Lactobacilli species counts increased in the monolaurin group compared with placebo (1.0 × 10 vs -5.2 × 10). Two thirds of both groups reported solicited urogenital adverse events, but these were mild to moderate with no significant difference between groups (p = .24). CONCLUSIONS: Monolaurin was no more clinically or microbiologically effective than placebo in curing BV. Future research should explore whether monolaurin may be used to increase Lactobacilli species.


Assuntos
Lauratos/uso terapêutico , Monoglicerídeos/uso terapêutico , Cremes, Espumas e Géis Vaginais/uso terapêutico , Vaginose Bacteriana/tratamento farmacológico , Adolescente , Adulto , Feminino , Humanos , Pessoa de Meia-Idade , Placebos , Resultado do Tratamento , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...