Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Free Radic Res ; 50(12): 1386-1395, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27776433

RESUMO

Excessive release of hemoglobin from red blood cells markedly disturbs the health status of patients due to cytotoxic effects of free hemoglobin and heme. The latter component is able to initiate novel hemolytic events in unperturbed red blood cells. We modeled this process by incubation of ferric protoporphyrin IX with freshly isolated red blood cells from healthy volunteers. The heme-induced hemolysis was inhibited in a concentration-dependent manner by the chlorite-based drug WF10, whereby the hemolysis degree was totally abolished at a molar ratio of 1:2 between chlorite and heme. Upon incubation of heme with WF10, the ultraviolet-visible spectrum changed, whereas the release of iron from heme and the appearance of fluorescent breakdown products of the porphyrin ring were negligible at this ratio, but increased with increasing excess of chlorite over heme. Thus, inhibition of hemolysis by WF10 takes already place at those chlorite concentrations, where no degradation of the porphyrin ring occurs. As WF10 is applied in form of an intravenous infusion to patients with severe inflammatory states, these data support the hypothesis that the beneficial WF10 effects are closely associated with inactivation of free heme.


Assuntos
Cloro/administração & dosagem , Hemólise/genética , Eritrócitos/metabolismo , Heme/metabolismo , Humanos
2.
Free Radic Res ; 50(12): 1287-1295, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27629563

RESUMO

In the presence of hydrogen peroxide, the heme protein lactoperoxidase is able to oxidize thiocyanate and iodide to hypothiocyanite, reactive iodine species, and the inter(pseudo)halogen cyanogen iodide. The killing efficiency of these oxidants and of the lactoperoxidase-H2O2-SCN-/I- system was investigated on the bioluminescent Escherichia coli K12 strain that allows time-resolved determination of cell viability. Among the tested oxidants, cyanogen iodide was most efficient in killing E. coli, followed by reactive iodine species and hypothiocyanite. Thereby, the killing activity of the LPO-H2O2-SCN-/I- system was greatly enhanced in comparison to the sole application of iodide when I- was applied in two- to twenty-fold excess over SCN-. Further evidence for the contribution of cyanogen iodide in killing of E. coli was obtained by applying methionine. This amino acid disturbed the killing of E. coli mediated by reactive iodine species (partial inhibition) and cyanogen iodide (total inhibition), but not by hypothiocyanite. Changes in luminescence of E. coli cells correlate with measurements of colony forming units after incubation of cells with the LPO-H2O2-SCN-/I- system or with cyanogen iodide. Taken together, these results are important for the future optimization of the use of lactoperoxidase in biotechnological applications.


Assuntos
Peróxido de Hidrogênio/metabolismo , Iodetos/metabolismo , Lactoperoxidase/metabolismo , Nitrilas/metabolismo , Escherichia coli
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...