Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Appl Opt ; 45(25): 6409-20, 2006 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-16912777

RESUMO

We introduce a new approach to coherent lidar range-Doppler sensing by utilizing random-noise illuminating waveforms and a quantum-optical, parallel sensor based on spatial-spectral holography (SSH) in a cryogenically cooled inhomogeneously broadened absorber (IBA) crystal. Interference between a reference signal and the lidar return in the spectrally selective absorption band of the IBA is used to sense the lidar returns and perform the front-end range-correlation signal processing. Modulating the reference by an array of Doppler compensating frequency shifts enables multichannel Doppler filtering. This SSH sensor performs much of the postdetection signal processing, increases the lidar system sensitivity through range-correlation gain before detection, and is capable of not only Doppler processing but also parallel multibeam reception using the high-spatial resolution of the IBA crystals. This approach permits the use of ultrawideband, high-power, random-noise, cw lasers as ranging waveforms in lidar systems instead of highly stabilized, injection-seeded, and amplified pulsed or modulated laser sources as required by most conventional coherent lidar systems. The capabilities of the IBA media for many tens of gigahertz bandwidth and resolution in the 30-300 kHz regime, while using either a pseudo-noise-coded waveform or just a high-power, noisy laser with a broad linewidth (e.g., a truly random noise lidar) may enable a new generation of improved lidar sensors and processors. Preliminary experimental demonstrations of lidar ranging and simulation on range-Doppler processing are presented.

2.
Appl Opt ; 45(25): 6393-408, 2006 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-16912776

RESUMO

We demonstrate a 20 GHz spectrum analyzer with 1 MHz resolution and >40 dB dynamic range using spectral-hole-burning (SHB) crystals, which are cryogenically cooled crystal hosts lightly doped with rare-earth ions. We modulate a rf signal onto an optical carrier using an electro-optic intensity modulator to produce a signal beam modulated with upper and lower rf sidebands. Illuminating SHB crystals with modulated beams excites only those ions resonant with corresponding modulation frequencies, leaving holes in the crystal's absorption profile that mimic the modulation power spectrum and persist for up to 10 ms. We determine the spectral hole locations by probing the crystal with a chirped laser and detecting the transmitted intensity. The transmitted intensity is a blurred-out copy of the power spectrum of the original illumination as mapped into a time-varying signal. Scaling the time series associated with the transmitted intensity by the instantaneous chirp rate yields the modulated beam's rf power spectrum. The homogeneous linewidth of the rare-earth ions, which can be <100 kHz at cryogenic temperatures, limits the fundamental spectral resolution, while the medium's inhomogeneous linewidth, which can be >20 GHz, determines the spectral bandwidth.

3.
Appl Opt ; 44(25): 5257-72, 2005 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-16149349

RESUMO

We propose, analyze, and demonstrate the use of a holographic method for cohering the output of a fiber tapped delay line (FTDL) that enables the use of fiber-remote optical modulators in coherent optical processing systems. We perform a theoretical examination of the phase-cohering process and show experimental results for a radio frequency (RF) spectrum analyzer that uses a lens to spatially Fourier transform the output of a holographically phase-cohered FTDL providing 50 MHz resolution and bandwidths approaching 3 GHz. Substantial improvements in bandwidth should be achievable with better fiber length-trimming accuracy and improvements in resolution can be obtained with longer fiber delay lines. We also analyze and demonstrate the use of a parallel holographic technique that compensates for polarization state scrambling induced by propagation through an array of single-mode fibers. Both the phase-cohering holography and the polarization fluctuation compensation can operate on hundreds of fibers in parallel, enabling both coherent optical signal processing with FTDLs and coherent fiber remoting of optically modulated RF signals from antenna arrays.

4.
Opt Express ; 13(1): 182-94, 2005 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-19488342

RESUMO

We present a one-dimensional iterative predictor-corrector finite-difference time-domain method for modeling of broadband optical pulse propagation and interaction with inhomogeneously broadened materials. The simulator is used to demonstrate two- and three-pulse photon echoes resulting from bandwidth limited pulse and matched chirp interactions with a material modeled with hundreds of equally spaced, discrete spectral lines of detuning. The results are illustrated as Bloch-sphere evolution movies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA