Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 8732, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37253763

RESUMO

We present a method that lowers the dose required for an electron ptychographic reconstruction by adaptively scanning the specimen, thereby providing the required spatial information redundancy in the regions of highest importance. The proposed method is built upon a deep learning model that is trained by reinforcement learning, using prior knowledge of the specimen structure from training data sets. We show that using adaptive scanning for electron ptychography outperforms alternative low-dose ptychography experiments in terms of reconstruction resolution and quality.

2.
Opt Express ; 28(19): 28306-28323, 2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32988105

RESUMO

The overdetermination of the mathematical problem underlying ptychography is reduced by a host of experimentally more desirable settings. Furthermore, reconstruction of the sample-induced phase shift is typically limited by uncertainty in the experimental parameters and finite sample thicknesses. Presented is a conjugate gradient descent algorithm, regularized optimization for ptychography (ROP), that recovers the partially known experimental parameters along with the phase shift, improves resolution by incorporating the multislice formalism to treat finite sample thicknesses, and includes regularization in the optimization process, thus achieving reliable results from noisy data with severely reduced and underdetermined information.

3.
Opt Express ; 25(19): 22880-22896, 2017 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-29041594

RESUMO

The bi-circular scheme for high harmonic generation, which combines two counter-rotating circular fields with frequency ratio 2:1, has recently permitted to generate high harmonics with essentially circular polarization, opening the way for ultrafast chiral studies. This scheme produces harmonic lines at 3N + 1 and 3N + 2 multiples of the fundamental driving frequency, while the 3N lines are forbidden owing to the three-fold symmetry of the field. It is generally established that the routinely observed signals at these forbidden harmonic lines come from a slight ellipticity in the driving fields, which breaks the three-fold symmetry. We find that this is neither the only nor it is the dominant mechanism responsible. The forbidden lines can be observed even for perfectly circular, long driving pulses. We show that they encode rich information on the sub-cycle electronic dynamics that occur during the generation process. By varying the time delay and relative intensity between the two drivers, we demonstrate that when the second harmonic either precedes or is more intense than the fundamental field, the weak effects of dynamical symmetry breaking caused by finite pulse duration are amplified by electrons trapped in Rydberg orbits (i.e., Freeman resonances), and that the forbidden harmonic lines are a witness of this.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...