Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 13(27): 32126-32135, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34213325

RESUMO

Metal-ceramic nanocomposites exhibit exceptional mechanical properties with a combination of high strength, toughness, and hardness that are not achievable in monolithic metals or ceramics, which make them valuable for applications in fields such as the aerospace and automotive industries. In this study, interpenetrating nanocomposites of three-dimensionally ordered macroporous (3DOM) tungsten-silicon oxycarbide (W-SiOC) were prepared, and their mechanical properties were investigated. In these nanocomposites, the crystalline tungsten and amorphous silicon oxycarbide phases both form continuous and interpenetrating networks, with some discrete free carbon nanodomains. The W-SiOC material inherits the periodic structure from its 3DOM W matrix, and this periodic structure can be maintained up to 1000 °C. In situ SEM micropillar compression tests demonstrated that the 3DOM W-SiOC material could sustain a maximum average stress of 1.1 GPa, a factor of 22 greater than that of the 3DOM W matrix, resulting in a specific strength of 640 MPa/(Mg/m3) at 30 °C. Deformation behavior of the developed 3DOM nanocomposite in a wide temperature range (30-575 °C) was investigated. The deformation mode of 3DOM W-SiOC exhibited a transition from fracture-dominated deformation at low temperatures to plastic deformation above 425 °C.

2.
ACS Appl Mater Interfaces ; 12(44): 49971-49981, 2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33079519

RESUMO

Metal-organic framework (MOF) materials have shown promise in many applications, ranging from gas storage to absorption and catalysis. Because of the high porosity and low density of many MOFs, densification methods such as pelletization and extrusion are needed for practical use and for commercialization of MOF materials. Therefore, it is important to elucidate the mechanical properties of MOFs and to develop methods of further enhancing their mechanical strength. Here, we demonstrate the influence of phase purity and the presence of a pore-reinforcing component on elastic modulus and yield stress of NU-1000 MOFs through nanoindentation methods and finite element simulation. Three types of NU-1000 single crystals were compared: phase-pure NU-1000 prepared with biphenyl-4-carboxylic acid as a modulator (NU-1000-bip), NU-1000 prepared with benzoic acid as a modulator (NU-1000-ben), which results in an additional, denser impurity phase of NU-901, and NU-1000-bip whose mesopores were infiltrated with silica (SiOx(OH)y@NU-1000) by nanocasting methods. By maintaining phase purity and minimizing defects, the elastic modulus could be enhanced by nearly an order of magnitude: phase-pure NU-1000-bip crystals exhibited an elastic modulus of 21 GPa, whereas the value for NU-1000-ben crystals was only 3 GPa. The introduction of silica into the mesopores of NU-1000-bip did not strongly affect the measured elastic modulus (19 GPa) but significantly increased the load at failure from 2000 µN to 3000-4000 µN.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...