Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 14(8)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38668188

RESUMO

Off-stoichiometric NixFe3-xO4 ultrathin films (x < 2.1) with varying Ni content x and thickness 16 (±2) nm were grown on MgO(001) by reactive molecular beam epitaxy. Synchrotron-based high-resolution X-ray diffraction measurements reveal vertical compressive strain for all films, resulting from a lateral pseudomorphic adaption of the film to the substrate lattice without any strain relaxation. Complete crystallinity with smooth interfaces and surfaces is obtained independent of the Ni content x. For x < 1 an expected successive conversion from Fe3O4 to NiFe2O4 is observed, whereas local transformation into NiO structures is observed for films with Ni content x > 1. However, angle-resolved hard X-ray photoelectron spectroscopy measurements indicate homogeneous cationic distributions without strictly separated phases independent of the Ni content, while X-ray absorption spectroscopy shows that also for x > 1, not all Fe2+ cations are substituted by Ni2+ cations. The ferrimagnetic behavior, as observed by superconducting quantum interference device magnetometry, is characterized by decreasing saturation magnetization due to the formation of antiferromagnetic NiO parts.

2.
Small Methods ; 8(3): e2300944, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38009726

RESUMO

Many metals form nanometer-thin self-passivating oxide layers upon exposure to the atmosphere, which affects a wide range of interfacial properties and shapes the way how metals interact with their environment. Such native oxide layers are commonly analyzed by X-ray photoelectron spectroscopy (XPS), which provides a depth-resolved chemical state and compositional analysis either by ion etching or modeling of the electron escape depths. The latter is commonly used to calculate the average thickness of a native oxide layer. However, the measurement of concentration profiles at the oxide-metal interface remains challenging. Here, a simple and accessible approach for the depth profiling of ultrathin oxide layers within single fixed-angle XPS spectra is proposed. Instead of using only one peak in the spectrum, as is usually the case, all peaks within the energy range of a standard lab device are utilized, thus resembling energy-resolved XPS without the need for a synchrotron. New models that allow the calculation of depth-resolved concentration profiles at the oxide-metal interface are derived and tested, which are also valid for angular- and energy-resolved XPS. The proposed method not only improves the accuracy of earlier approaches but also paves the way for a more holistic understanding of the XPS spectrum.

3.
Nano Lett ; 20(11): 7828-7834, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33084344

RESUMO

Spin currents can exert spin-transfer torques on magnetic systems even in the limit of vanishingly small net magnetization, as recently shown for antiferromagnets. Here, we experimentally show that a spin-transfer torque is operative in a macroscopic ensemble of weakly interacting, randomly magnetized Co nanomagnets. We employ element- and time-resolved X-ray ferromagnetic resonance (XFMR) spectroscopy to directly detect subnanosecond dynamics of the Co nanomagnets, excited into precession with cone angle ≳0.003° by an oscillating spin current. XFMR measurements reveal that as the net moment of the ensemble decreases, the strength of the spin-transfer torque increases relative to those of magnetic field torques. Our findings point to spin-transfer torque as an effective way to manipulate the state of nanomagnet ensembles at subnanosecond time scales.

4.
Nano Lett ; 18(2): 1264-1268, 2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29365261

RESUMO

Topological crystalline insulators represent a new state of matter, in which the electronic transport is governed by mirror-symmetry protected Dirac surface states. Due to the helical spin-polarization of these surface states, the proximity of topological crystalline matter to a nearby superconductor is predicted to induce unconventional superconductivity and, thus, to host Majorana physics. We report on the preparation and characterization of Nb-based superconducting quantum interference devices patterned on top of topological crystalline insulator SnTe thin films. The SnTe films show weak anti-localization, and the weak links of the superconducting quantum interference devices (SQUID) exhibit fully gapped proximity-induced superconductivity. Both properties give a coinciding coherence length of 120 nm. The SQUID oscillations induced by a magnetic field show 2π periodicity, possibly dominated by the bulk conductivity.

5.
Phys Rev Lett ; 119(22): 227205, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29286760

RESUMO

We identify and investigate thermal spin transport phenomena in sputter-deposited Pt/NiFe_{2}O_{x} (4≥x≥0) bilayers. We separate the voltage generated by the spin Seebeck effect from the anomalous Nernst effect (ANE) contributions and even disentangle the ANE in the ferromagnet (FM) from the ANE produced by the Pt that is spin polarized due to its proximity to the FM. Further, we probe the dependence of these effects on the electrical conductivity and the band gap energy of the FM film varying from nearly insulating NiFe_{2}O_{4} to metallic Ni_{33}Fe_{67}. A proximity-induced ANE could only be identified in the metallic Pt/Ni_{33}Fe_{67} bilayer in contrast to Pt/NiFe_{2}O_{x} (x>0) samples. This is verified by the investigation of static magnetic proximity effects via x-ray resonant magnetic reflectivity.

6.
Sci Rep ; 7: 40586, 2017 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-28094279

RESUMO

A thermal gradient as the driving force for spin currents plays a key role in spin caloritronics. In this field the spin Seebeck effect (SSE) is of major interest and was investigated in terms of in-plane thermal gradients inducing perpendicular spin currents (transverse SSE) and out-of-plane thermal gradients generating parallel spin currents (longitudinal SSE). Up to now all spincaloric experiments employ a spatially fixed thermal gradient. Thus, anisotropic measurements with respect to well defined crystallographic directions were not possible. Here we introduce a new experiment that allows not only the in-plane rotation of the external magnetic field, but also the rotation of an in-plane thermal gradient controlled by optical temperature detection. As a consequence, the anisotropic magnetothermopower and the planar Nernst effect in a permalloy thin film can be measured simultaneously. Thus, the angular dependence of the magnetothermopower with respect to the magnetization direction reveals a phase shift, that allows the quantitative separation of the thermopower, the anisotropic magnetothermopower and the planar Nernst effect.

7.
Nat Commun ; 6: 8211, 2015 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-26394541

RESUMO

The spin Seebeck effect, the generation of a spin current by a temperature gradient, has attracted great attention, but the interplay over a millimetre range along a thin ferromagnetic film as well as unintended side effects which hinder an unambiguous detection have evoked controversial discussions. Here, we investigate the inverse spin Hall voltage of a 10 nm thin Pt strip deposited on the magnetic insulators Y3Fe5O12 and NiFe2O4 with a temperature gradient in the film plane. We show characteristics typical of the spin Seebeck effect, although we do not observe the most striking features of the transverse spin Seebeck effect. Instead, we attribute the observed voltages to the longitudinal spin Seebeck effect generated by a contact tip induced parasitic out-of-plane temperature gradient, which depends on material, diameter and temperature of the tip.

8.
J Phys Condens Matter ; 25(7): 076001, 2013 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-23327939

RESUMO

The ferrimagnetic Heusler compound Mn(2)VGa is predicted to have a pseudogap in the majority spin channel, which should lead to a negative tunnel magnetoresistance (TMR). We synthesized epitaxial Mn(2)VGa thin films on MgO(001) substrates by dc and rf magnetron co-sputtering, resulting in nearly stoichiometric films. XRD analysis revealed a mostly B2 ordered structure for the films deposited at substrate temperatures of 350, 450, and 550 °C. Magnetic tunnel junctions with MgO barriers and CoFe counter-electrodes were fabricated. After post-annealing at up to T(a) = 425 °C negative TMR was obtained around zero bias, providing evidence for inverted spin polarization. The band structures of both electrodes were computed within the coherent potential approximation and used to calculate the TMR(V) characteristics, which were in good agreement with our experimental findings.


Assuntos
Campos Magnéticos , Manganês/química , Modelos Químicos , Semicondutores , Simulação por Computador , Impedância Elétrica
9.
J Phys Condens Matter ; 23(11): 116005, 2011 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-21368360

RESUMO

The generalized Heusler compounds Mn(2)CoZ (Z = Al, Ga, In, Si, Ge, Sn, Sb) with the Hg(2)CuTi structure are of great interest due to their half-metallic ferrimagnetism. The complex magnetic interactions between the constituents are studied by means of first principles calculations of the Heisenberg exchange coupling parameters, and Curie temperatures are calculated from those. Due to the direct Mn-Mn exchange interaction in Mn(2)CoZ, the Curie temperature decreases, although the total moment increases when the valence electron number Z is increased. The exchange interactions are dominated by a strong direct exchange between Co and its nearest neighbor Mn on the B site, which is nearly constant. The coupling between the nearest neighbor Mn atoms scales with the magnetic moment of the Mn atom on the C site. Calculations with different lattice parameters suggest a negative pressure dependence of the Curie temperature, which follows from the decreasing magnetic moments. Curie temperatures of more than 800 K are predicted for Mn(2)CoAl (890 K), Mn(2)CoGa (886 K), and Mn(2)CoIn (845 K).

10.
Nat Mater ; 8(1): 56-61, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19079243

RESUMO

Knowledge of the spin polarization is of fundamental importance for the use of a material in spintronics applications. Here, we used femtosecond optical excitation of half-metals to distinguish between half-metallic and metallic properties. Because the direct energy transfer by Elliot-Yafet scattering is blocked in a half-metal, the demagnetization time is a measure for the degree of half-metallicity. We propose that this characteristic enables us vice versa to establish a novel and fast characterization tool for this highly important material class used in spin-electronic devices. The technique has been applied to a variety of materials where the spin polarization at the Fermi level ranges from 45 to 98%: Ni, Co(2)MnSi, Fe(3)O(4), La(0.66)Sr(0.33)MnO(3) and CrO(2).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...