Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 13(19)2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34641245

RESUMO

The optimization of the mechanical properties of composite materials has been a challenge since these materials were first used, especially in aeronautics. Reduced energy consumption, safety and reliability are mandatory to achieve a sustainable use of composite materials. The mechanical properties of composites are closely related to the amount of defects in the materials. Voids are known as one of the most important defect sources in resin film infusion (RFI)-manufactured composites. Minimizing the defect content leads to maximized mechanical properties and lightweight design. In this paper, a novel methodology based on computer vision is applied to control the impregnation velocity, reduce the void content and enhance the impact properties. Optimized drop-impact properties were found once the impregnation velocity was analyzed and optimized. Its application in both conventional and stitching-reinforced composites concludes with an improvement in the damage threshold load, peak force and damaged area. Although stitching tends to generate additional voids and reduces in-plane properties, the reduction in the damaged area means a positive balance in the mechanical properties. At the same time, the novel methodology provides the RFI process with a noticeable level of automation and control. Consequently, the industrial interest and the range of applications of this process are enhanced.

2.
Materials (Basel) ; 11(3)2018 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-29534003

RESUMO

The study of natural fiber reinforcement composite structures has focused the attention of the automobile industry due to the new regulation in relation to the recyclability and the reusability of the materials preserving and/or improving the mechanical characteristics. The influence of different parameters on the material behavior of natural fiber reinforced plastic structures has been investigated, showing the potential for transport application in energy absorbing structures. Two different woven fabrics (twill and hopsack) made of flax fibers as well as a non-woven mat made of a mixture of hemp and kenaf fibers were employed as reinforcing materials. These reinforcing textiles were impregnated with both HD-PE (high-density polyethylen) and PLA (polylactic acid) matrix, using a continuous compression molding press. The impregnated semi-finished laminates (so-called organic sheets) were thermoformed in a second step to half-tubes that were assembled through vibration-welding process to cylindric crash absorbers. The specimens were loaded by compression to determine the specific energy absorption capacity. Quasi-static test results were compared to dynamic test data obtained on a catapult arrangement. The differences on the specific energies absorption (SEA) as a function of different parameters, such as the wall thickness, the weave material type, the reinforced textiles, and the matrix used, depending on the velocity rate application were quantified. In the case of quasi-static analysis it is observed a 20% increment in the SEA value when wove Hopsack fabric reinforcement is employed. No velocity rate influence from the material was observed on the SEA evaluation at higher speeds used to perform the experiments. The influence of the weave configuration (Hopsack) seems to be more stable against buckling effects at low loading rates with 10% higher SEA values. An increase of SEA level of up to 72% for PLA matrix was observed when compared with HD-PE matrix.

3.
Materials (Basel) ; 10(7)2017 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-28773081

RESUMO

A quasistatic indentation numerical analysis in a round section specimen made of soft material has been performed and validated with a full field experimental technique, i.e., Digital Image Correlation 3D. The contact experiment specifically consisted of loading a 25 mm diameter rubber cylinder of up to a 5 mm indentation and then unloading. Experimental strains fields measured at the surface of the specimen during the experiment were compared with those obtained by performing two numerical analyses employing two different hyperplastic material models. The comparison was performed using an Image Decomposition new methodology that makes a direct comparison of full-field data independently of their scale or orientation possible. Numerical results show a good level of agreement with those measured during the experiments. However, since image decomposition allows for the differences to be quantified, it was observed that one of the adopted material models reproduces lower differences compared to experimental results.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...