Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arch Toxicol ; 98(6): 1859-1875, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38555327

RESUMO

Poisoning with the organophosphorus nerve agent VX can be life-threatening due to limitations of the standard therapy with atropine and oximes. To date, the underlying pathomechanism of VX affecting the neuromuscular junction has not been fully elucidated structurally. Results of recent studies investigating the effects of VX were obtained from cells of animal origin or immortalized cell lines limiting their translation to humans. To overcome this limitation, motor neurons (MN) of this study were differentiated from in-house feeder- and integration-free-derived human-induced pluripotent stem cells (hiPSC) by application of standardized and antibiotic-free differentiation media with the aim to mimic human embryogenesis as closely as possible. For testing VX sensitivity, MN were initially exposed once to 400 µM, 600 µM, 800 µM, or 1000 µM VX and cultured for 5 days followed by analysis of changes in viability and neurite outgrowth as well as at the gene and protein level using µLC-ESI MS/HR MS, XTT, IncuCyte, qRT-PCR, and Western Blot. For the first time, VX was shown to trigger neuronal cell death and decline in neurite outgrowth in hiPSC-derived MN in a time- and concentration-dependent manner involving the activation of the intrinsic as well as the extrinsic pathway of apoptosis. Consistent with this, MN morphology and neurite network were altered time and concentration-dependently. Thus, MN represent a valuable tool for further investigation of the pathomechanism after VX exposure. These findings might set the course for the development of a promising human neuromuscular test model and patient-specific therapies in the future.


Assuntos
Diferenciação Celular , Sobrevivência Celular , Células-Tronco Pluripotentes Induzidas , Neurônios Motores , Agentes Neurotóxicos , Compostos Organotiofosforados , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Neurônios Motores/efeitos dos fármacos , Compostos Organotiofosforados/toxicidade , Agentes Neurotóxicos/toxicidade , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Crescimento Neuronal/efeitos dos fármacos , Substâncias para a Guerra Química/toxicidade , Relação Dose-Resposta a Droga , Células Cultivadas
2.
Drug Test Anal ; 15(7): 730-744, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36787649

RESUMO

We herein present for the first time a micro liquid chromatography-electrospray ionization high-resolution tandem-mass spectrometry (µLC-ESI MS/HR MS) procedure to detect phosphonylated tyrosine (Tyr) and lysine (Lys) residues obtained from human hair exposed to organophosphorus nerve agents (OPNA). In general, toxic OPNA react with endogenous blood proteins causing the formation of adducts representing well-known targets for biomedical analysis to prove exposure. In contrast, no protein-derived biomarker has been introduced so far to document local exposure of hair. Accordingly, we developed and characterized a µLC-ESI MS/HR MS method for the analysis of scalp hair exposed to OPNA in vitro. Type I and Type II keratin from hair was dissolved during lysis, precipitated and subjected to pronase-catalyzed hydrolysis yielding single adducted Lys and in a much higher amount Tyr residues. Exposure to sarin caused the adduction of an isopropyl methylphosphonic acid moiety and exposure to VX yielded adducts of ethyl methylphosphonic acid, well suited as biomarkers of exposure. These were of appropriate stability in the autosampler for 24 h. The biomarker yield obtained from hair of six individuals as well as from hair of six different parts of the body of one individual (armpit, beard, leg, arm, scalp, and pubic) differed reasonably indicating the variable individual protein composition and structure of hair. Exposed hair stored at ambient temperature for 9 weeks with contact to air and daylight showed stability of all adducts and therefore their suitability for verification of exposure.


Assuntos
Substâncias para a Guerra Química , Agentes Neurotóxicos , Humanos , Agentes Neurotóxicos/metabolismo , Sarina , Lisina , Compostos Organofosforados , Tirosina/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Biomarcadores , Cabelo/química , Substâncias para a Guerra Química/análise
3.
Arch Toxicol ; 96(8): 2287-2298, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35570235

RESUMO

In the recent past, the blister agent sulfur mustard (SM) deployed by the terroristic group Islamic State has caused a huge number of civilian and military casualties in armed conflicts in the Middle East. The vaporized or aerolized agent might be inhaled and have direct contact to skin and hair. Reaction products of SM with plasma proteins (adducts) represent well-established systemic targets for the bioanalytical verification of exposure. The SM-derived hydroxyethylthioethyl (HETE)-moiety is attached to nucleophilic amino acid side chains and allows unambiguous adduct detection. For shipping of common blood and plasma samples, extensive packaging rules are to be followed as these matrices are considered as potentially infectious material. In contrast, hair is considered as non-infectious thus making its handling and transportation much less complicated. Therefore, we addressed this matrix to develop a procedure for bioanalytical verification. Following optimized lysis of SM-treated human scalp hair and pepsin-catalyzed proteolysis of adducts of keratin type I and II, microbore liquid chromatography-electrospray ionization high-resolution tandem-mass spectrometry (µLC-ESI MS/HR MS) was used to detect three alkylated keratin-derived biomarker peptides: AE(-HETE)IRSDL, FKTIE(-HETE)EL, and LE(-HETE)TKLQF simultaneously. All bear the HETE-moiety bound to a glutamic acid residue. Protein adducts were stable for at least 14 weeks at ambient temperature and contact to air, and were not affected by washing the hair with shampoo. The biomarker peptides were also obtained from beard, armpit, abdominal, and pubic hair. This is the first report introducing stable local peptide adduct biomarkers from hair, that is easily accessible by a non-invasive sampling process.


Assuntos
Substâncias para a Guerra Química , Gás de Mostarda , Biomarcadores , Substâncias para a Guerra Química/química , Cabelo/química , Humanos , Ácidos Hidroxieicosatetraenoicos , Queratinas , Gás de Mostarda/química , Gás de Mostarda/toxicidade , Peptídeos , Albumina Sérica Humana/química , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem/métodos
4.
Drug Test Anal ; 14(1): 80-91, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34397154

RESUMO

For the verification of exposure to the banned blister agent sulfur mustard (SM) and the better understanding of its pathophysiology, protein adducts formed with endogenous proteins represent an important field of toxicological research. SM and its analogue 2-chloroethyl ethyl sulfide (CEES) are well known to alkylate nucleophilic amino acid side chains, for example, free-thiol groups of cysteine residues. The specific two-dimensional thiol difference gel electrophoresis (2D-thiol-DIGE) technique making use of maleimide dyes allows the staining of free cysteine residues in proteins. As a consequence of alkylation by, for example, SM or CEES, this staining intensity is reduced. 2D-thiol-DIGE analysis of human plasma incubated with CEES and subsequent matrix-assisted laser desorption/ionization time-of-flight (tandem) mass-spectrometry, MALDI-TOF MS(/MS), revealed transthyretin (TTR) as a target of alkylating agents. TTR was extracted from SM-treated plasma by immunomagnetic separation (IMS) and analyzed after tryptic cleavage by microbore liquid chromatography-electrospray ionization high-resolution tandem-mass spectrometry (µLC-ESI MS/HR MS). It was found that the Cys10 -residue of TTR present in the hexapeptide C(-HETE)PLMVK was alkylated by the hydroxyethylthioethyl (HETE)-moiety, which is characteristic for SM exposure. It was shown that alkylated TTR is stable in plasma in vitro at 37°C for at least 14 days. In addition, C(-HETE)PLMVK can be selectively detected, is stable in the autosampler over 24 h, and shows linearity in a broad concentration range from 15.63 µM to 2 mM SM in plasma in vitro. Accordingly, TTR might represent a complementary protein marker molecule for the verification of SM exposure.


Assuntos
Substâncias para a Guerra Química/análise , Gás de Mostarda/análogos & derivados , Pré-Albumina/metabolismo , Alquilação , Biomarcadores/metabolismo , Substâncias para a Guerra Química/intoxicação , Cromatografia Líquida/métodos , Eletroforese/métodos , Humanos , Gás de Mostarda/análise , Gás de Mostarda/intoxicação , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem/métodos , Fatores de Tempo
5.
Drug Test Anal ; 13(2): 268-282, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32852113

RESUMO

Sulfur mustard (SM) is a toxic chemical warfare agent deployed in several conflicts within the last 100 years and still represents a threat in terroristic attacks and warfare. SM research focuses on understanding the pathophysiology of SM and identifying novel biomarkers of exposure. SM is known to alkylate nucleophilic moieties of endogenous proteins, for example, free thiol groups of cysteine residues. The two-dimensional-thiol-differences in gel electrophoresis (2D-thiol-DIGE) technique is an initial proteomics approach to detect proteins with free cysteine residues. These amino acids are selectively labeled with infrared-maleimide dyes visualized after GE. Cysteine residues derivatized by alkylating agents are no longer accessible for the maleimide-thiol coupling resulting in the loss of the fluorescent signal of the corresponding protein. To prove the applicability of 2D-thiol-DIGE, this technology was exemplarily applied to neat human serum albumin treated with SM, to lysates from human cell culture exposed to SM as well as to human plasma exposed to CEES (chloroethyl ethyl sulfide, an SM analogue). Exemplarily, the most prominent proteins modified by SM were identified by matrix-assisted laser desorption/ionization time-of-flight (tandem) mass spectrometry, MALDI-TOF MS(/MS), as creatine kinase (CK) from human cells and as alpha-1 antitrypsin (A1AT) from plasma samples. Peptides containing the residue Cys282 of CK and Cys232 of A1AT were unambiguously identified by micro liquid chromatography-electrospray ionization high-resolution tandem-mass spectrometry (µLC-ESI MS/HR MS) as being alkylated by SM bearing the specific hydroxyethylthioethyl-(HETE)-moiety. Both peptides might represent potential biomarkers of SM exposure. This is the first report introducing these endogenous proteins as targets of SM alkylation.


Assuntos
Alquilação/efeitos dos fármacos , Substâncias para a Guerra Química/efeitos adversos , Creatina Quinase/metabolismo , Gás de Mostarda/efeitos adversos , alfa 1-Antitripsina/metabolismo , Creatina Quinase/química , Células HEK293 , Humanos , Modelos Moleculares , alfa 1-Antitripsina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...