Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Ecol Evol ; 14(7): e11663, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38994213

RESUMO

Several theoretical models have been proposed as the underlying mechanisms behind occupancy frequency distribution (OFD) patterns. For instance, the metapopulation dynamic model predicts bimodal OFD pattern indicating the dominance of dispersal processes in structuring the assemblages, while the niche-based model predicts unimodal right-skewed OFD pattern, and thus assemblages are driven mostly by niche processes. However, it is well known that the observed OFD pattern reflects the interplay of several other factors (e.g. habitat heterogeneity, species specificity and sampling protocol parameters). It follows that the individual contribution of each factor to the OFD pattern is rather complicated to explore. Our main objective was to examine the role of the spatial extent of the sampling and the dispersal strategies of species in shaping OFD pattern. For this, we collected samples of stream insect assemblages inhabiting near-natural streams in the Pannon Ecoregion. We formed groups of species representing contrasting dispersal strategies (referred to as dispersal groups). Applying a computer program algorithm, we produced samples with different spatial extent. We found that with increasing spatial extent, the OFD pattern changed from bimodal to unimodal for active dispersers. Insect groups with different dispersal strategies differed in the strength of support for OFD patterns within all spatial extent. Furthermore, the strength of support for OFD patterns varied across dispersal groups differently as the spatial extent increased. Our results reflected underlying changes in mechanisms structuring assemblages along an increasing spatial extent. We also assumed that the stream insect dispersal strategy influences the relative role of dispersal and niche processes particularly as spatial extent increases from stream reaches to the extent of adjacent valleys. We could define spatial extents and dispersal strategies within which unique metacommunity processes could underlie the organisation of assemblages.

2.
Parasitology ; 139(8): 1038-44, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22444479

RESUMO

Temperature can be a limiting factor on parasite development. Riccardoella limacum, a haematophagous mite, lives in the mantle cavity of helicid land snails. The prevalence of infection by R. limacum in populations of the land snail Arianta arbustorum is highly variable (0-78%) in Switzerland. However, parasitic mites do not occur in host populations at altitudes of 1290 m or higher. It has been hypothesized that the host's hibernation period might be too long at high elevations for mites and their eggs to survive. To test this hypothesis, we experimentally infected snails and allowed them to hibernate at 4°C for periods of 4-7 months. Winter survival of host snails was negatively affected by R. limacum. The intensity of mite infection decreased with increasing hibernation duration. Another experiment with shorter recording intervals revealed that mites do not leave the host when it buries in the soil at the beginning of hibernation. The number of mites decreased after 24 days of hibernation, whereas the number of eggs attached to the lung tissue remained constant throughout hibernation. Thus, R. limacum survives the winter in the egg stage in the host. Low temperature at high altitudes may limit the occurrence of R. limacum.


Assuntos
Caracois Helix/parasitologia , Hibernação/fisiologia , Ácaros/fisiologia , Altitude , Animais , Temperatura Baixa , Interações Hospedeiro-Parasita , Pulmão/parasitologia , Contagem de Ovos de Parasitas , Dinâmica Populacional , Estações do Ano , Suíça
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...