Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Int J Mol Sci ; 25(13)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-39000091

RESUMO

Novel (immune) therapies are needed to stabilize remissions or the disease in AML. Leukemia derived dendritic cells (DCleu) can be generated ex vivo from AML patients' blasts in whole blood using approved drugs (GM-CSF and PGE-1 (Kit M)). After T cell enriched, mixed lymphocyte culture (MLC) with Kit M pretreated (vs. untreated WB), anti-leukemically directed immune cells of the adaptive and innate immune systems were already shown to be significantly increased. We evaluated (1) the use of leukemia-specific assays [intracellular cytokine production of INFy, TNFa (INCYT), and degranulation detected by CD107a (DEG)] for a detailed quantification of leukemia-specific cells and (2), in addition, the correlation with functional cytotoxicity and patients' clinical data in Kit M-treated vs. not pretreated settings. We collected whole blood (WB) samples from 26 AML patients at first diagnosis, during persisting disease, or at relapse after allogeneic stem cell transplantation (SCT), and from 18 healthy volunteers. WB samples were treated with or without Kit M to generate DC/DCleu. After MLC with Kit M-treated vs. untreated WB antigen-specific/anti-leukemic effects were assessed through INCYT, DEG, and a cytotoxicity fluorolysis assay. The quantification of cell subtypes was performed via flow cytometry. Our study showed: (1) low frequencies of leukemia-specific cells (subtypes) detectable in AML patients' blood. (2) Significantly higher frequencies of (mature) DCleu generable without induction of blast proliferation in Kit M-treated vs. untreated samples. (3) Significant increase in frequencies of immunoreactive cells (e.g., non-naive T cells, Tprol) as well as in INCYT/DEG ASSAYS leukemia-specific adaptive-(e.g., B, T(memory)) or innate immune cells (e.g., NK, CIK) after MLC with Kit M-treated vs. untreated WB. The results of the intracellular production of INFy and TNFa were comparable. The cytotoxicity fluorolysis assay revealed significantly enhanced blast lysis in Kit M-treated vs. untreated WB. Significant correlations could be shown between induced leukemia-specific cells from several lines and improved blast lysis. We successfully detected and quantified immunoreactive cells at a single-cell level using the functional assays (DEG, INCYT, and CTX). We could quantify leukemia-specific subtypes in uncultured WB as well as after MLC and evaluate the impact of Kit M pretreated (DC/DCleu-containing) WB on the provision of leukemia-specific immune cells. Kit M pretreatment (vs. no pretreatment) was shown to significantly increase leukemia-specific IFNy and TNFa producing, degranulating cells and to improve blast-cytotoxicity after MLC. In vivo treatment of AML patients with Kit M may lead to anti-leukemic effects and contribute to stabilizing the disease or remissions. INCYT and DEG assays qualify to quantify potentially leukemia-specific cells on a single cell level and to predict the clinical course of patients under treatment.


Assuntos
Citocinas , Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/imunologia , Leucemia Mieloide Aguda/terapia , Leucemia Mieloide Aguda/patologia , Leucemia Mieloide Aguda/tratamento farmacológico , Pessoa de Meia-Idade , Masculino , Adulto , Feminino , Citocinas/metabolismo , Idoso , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Degranulação Celular/efeitos dos fármacos , Adulto Jovem
2.
Cancers (Basel) ; 16(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39001445

RESUMO

Hypoxia can modulate the immune system by affecting the function and activity of immune cells, potentially leading to altered immune responses. This study investigated the generation of leukemia-derived dendritic cells (DCleu) from leukemic blasts and their impact on immune cell activation under hypoxic (5-10% O2) compared to normoxic (21% O2) conditions using various immunomodulatory Kits. The results revealed that DC/DCleu-generation was similar under hypoxic and normoxic conditions, with no significant differences observed in frequencies of generated DC/DCleu. Furthermore, the study showed that the activation of immune cells and their anti-leukemic activity improved when T cell-enriched immunoreactive cells were co-cultured with DC/DCleu which were generated with Kit I and M compared to the control after mixed lymphocyte cultures. The anti-leukemic activity was improved under hypoxic compared to normoxic conditions after MLCWB-DC Kit M. These findings suggest that DC/DCleu-cultures of leukemic whole blood with Kits under hypoxic conditions yield comparable frequencies of DC/DCleu and can even increase the anti-leukemic activity compared to normoxic conditions. Overall, this research highlights the potential of utilizing DC/DCleu (potentially induced in vivo with Kits) as a promising approach to enhance immune response in patients with acute myeloid leukemia.

3.
Int J Mol Sci ; 24(24)2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38139264

RESUMO

Although several (chemotherapeutic) protocols to treat acute myeloid leukemia (AML) are available, high rates of relapses in successfully treated patients occur. Strategies to stabilize remissions are greatly needed. The combination of the (clinically approved) immune-modulatory compounds Granulocyte-Macrophage-Colony-Stimulating-Factor (GM-CSF) and Prostaglandine E1 (PGE-1) (Kit-M) converts myeloid blasts into dendritic cells of leukemic origin (DCleu). After stimulation with DCleu ex vivo, leukemia-specific antileukemic immune cells are activated. Therefore, Kit-M treatment may be an attractive immunotherapeutic tool to treat patients with myeloid leukemia. Kit-M-mediated antileukemic effects on whole bone marrow (WBM) were evaluated and compared to whole blood (WB) to evaluate the potential effects of Kit-M on both compartments. WB and WBM samples from 17 AML patients at first diagnosis, in persisting disease and at relapse after allogeneic stem cell transplantation (SCT) were treated in parallel with Kit-M to generate DC/DCleu. Untreated samples served as controls. After a mixed lymphocyte culture enriched with patients' T cells (MLC), the leukemia-specific antileukemic effects were assessed through the degranulation- (CD107a+ T cells), the intracellular IFNγ production- and the cytotoxicity fluorolysis assay. Quantification of cell subtypes was performed via flow cytometry. In both WB and WBM significantly higher frequencies of (mature) DCleu were generated without induction of blast proliferation in Kit-M-treated samples compared to control. After MLC with Kit-M-treated vs. not pretreated WB or WBM, frequencies of (leukemia-specific) immunoreactive cells (e.g., non-naive, effector-, memory-, CD3+ß7+ T cells, NK- cells) were (significantly) increased, whereas leukemia-specific regulatory T cells (Treg, CD152+ T cells) were (significantly) decreased. The cytotoxicity fluorolysis assay showed a significantly improved blast lysis in Kit-M-treated WB and WBM compared to control. A parallel comparison of WB and WBM samples revealed no significant differences in frequencies of DCleu, (leukemia-specific) immunoreactive cells and achieved antileukemic processes. Kit-M was shown to have comparable effects on WB and WBM samples regarding the generation of DCleu and activation of (antileukemic) immune cells after MLC. This was true for samples before or after SCT. In summary, a potential Kit-M in vivo treatment could lead to antileukemic effects in WB as well as WBM in vivo and to stabilization of the disease or remission in patients before or after SCT. A clinical trial is currently being planned.


Assuntos
Alprostadil , Leucemia Mieloide Aguda , Humanos , Alprostadil/farmacologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Células Dendríticas , Medula Óssea , Ativação Linfocitária , Linfócitos T Reguladores , Granulócitos , Macrófagos
4.
Biomolecules ; 13(6)2023 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-37371569

RESUMO

Volatile organic compounds (VOCs) reflect the metabolism in healthy and pathological conditions, and can be collected easily in a noninvasive manner. They are directly measured using electronical nose (eNose), and may qualify as a systemic tool to monitor biomarkers related to disease. Myeloid leukemic blasts can be transformed into leukemia-derived dendritic cells (DCleu) able to improve (anti-leukemic) immune responses. To profile immunological changes in healthy and acute myeloid leukemic (AML) patients' ex vivo cell cultures, we correlated the cell biological data with the profiles of cell culture supernatant-derived VOCs. DC/DCleu from leukemic or healthy whole blood (WB) were generated without (Control) or with immunomodulatory Kit M (Granulocyte macrophage-colony-stimulating-factor (GM-CSF) + prostaglandin E1 (PGE1)) in dendritic cell cultures (DC culture). Kit-pretreated/not pretreated WB was used to stimulate T cell-enriched immunoreactive cells in mixed lymphocyte cultures (MLC culture). Leukemia-specific adaptive and innate immune cells were detected with a degranulation assay (Deg) and an intracellular cytokine assay (InCyt). Anti-leukemic cytotoxicity was explored with a cytotoxicity fluorolysis assay (CTX). VOCs collected from serum or DC- and MLC culture supernatants (with vs. without Kit M pretreatment and before vs. after culture) were measured using eNose. Compared to the Control (without treatment), Kit M-pretreated leukemic and healthy WB gave rise to higher frequencies of mature (leukemia-derived) DC subtypes of activated and (memory) T cells after MLC. Moreover, antigen (leukemia)-specific cells of several lines (innate and adaptive immunity cells) were induced, giving rise to blast-lysing cells. The eNose could significantly distinguish between healthy and leukemic patients' serum, DC and MLC culture supernatant-derived volatile phases and could significantly separate several supernatant (with vs. without Kit M treatment, cultured vs. uncultured)-derived VOCs within subgroups (healthy DC or leukemic DC, or healthy MLC or leukemic MLC supernatants). Interestingly, the eNose could indicate a Kit M- and culture-associated effect. The eNose may be a prospective option for the deduction of a VOC-based profiling strategy using serum or cell culture supernatants and could be a useful diagnostic tool to recognize or qualify AML disease.


Assuntos
Leucemia Mieloide Aguda , Compostos Orgânicos Voláteis , Humanos , Células Dendríticas , Compostos Orgânicos Voláteis/metabolismo , Leucemia Mieloide Aguda/metabolismo , Estudos Prospectivos , Ativação Linfocitária
5.
Nanoscale Adv ; 5(6): 1691-1705, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36926576

RESUMO

BACKGROUND: Extracellular vesicles (EV) are cell-derived vesicles released by all cells in health and disease. Accordingly, EVs are also released by cells in acute myeloid leukemia (AML), a hematologic malignancy characterized by uncontrolled growth of immature myeloid cells, and these EVs likely carry markers and molecular cargo reflecting the malignant transformation occurring in diseased cells. Monitoring antileukemic or proleukemic processes during disease development and treatment is essential. Therefore, EVs and EV-derived microRNA (miRNA) from AML samples were explored as biomarkers to distinguish disease-related patterns ex vivo or in vivo. METHODOLOGY: EVs were purified from serum of healthy (H) volunteers and AML patients by immunoaffinity. EV surface protein profiles were analyzed by multiplex bead-based flow cytometry (MBFCM) and total RNA was isolated from EVs prior to miRNA profiling via small RNA sequencing. RESULTS: MBFCM revealed different surface protein patterns in H versus AML EVs. miRNA analysis showed individual as well as highly dysregulated patterns in H and AML samples. CONCLUSIONS: In this study, we provide a proof-of-concept for the discriminative potential of EV derived miRNA profiles as biomarkers in H versus AML samples.

6.
Front Immunol ; 13: 1044249, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36466891

RESUMO

Orofacial clefts (OFC) are frequent congenital malformations characterized by insufficient separation of oral and nasal cavities and require presurgical infant orthopedics and surgical interventions within the first year of life. Wound healing disorders and higher prevalence of gingivitis and plaque levels are well-known challenges in treatment of children with OFC. However, oral inflammatory mediators were not investigated after birth using non-invasive sampling methods so far. In order to investigate the impact of OFC on oral cytokine levels, we collected tongue smear samples from 15 neonates with OFC and 17 control neonates at two time points (T), T0 at first consultation after birth, and T1, 4 to 5 weeks later. The samples were analyzed using multiplex immunoassay. Overall, we found significantly increased cytokine levels (TNF, IL-1ß/-2/-6/-8/-10) in tongue smear samples from neonates with OFC compared to controls, especially at T0. The increase was even more pronounced in neonates with a higher cleft severity. Further, we detected a significant positive correlation between cleft severity score and distinct pro-inflammatory mediators (GM-CSF, IL-1ß, IL-6, IL-8) at T0. Further, we found that breast-milk (bottle) feeding was associated with lower levels of pro-inflammatory cytokines (IL-6/-8) in neonates with OFC compared to formula-fed neonates. Our study demonstrated that neonates with OFC, especially with high cleft severity, are characterized by markedly increased inflammatory mediators in tongue smear samples within the first weeks of life potentially presenting a risk for oral inflammatory diseases. Therefore, an inflammatory monitoring of neonates with (severe) OFC and the encouragement of mother to breast-milk (bottle) feed might be advisable after birth and/or prior to cleft surgery.


Assuntos
Fenda Labial , Fissura Palatina , Feminino , Criança , Lactente , Recém-Nascido , Humanos , Citocinas , Mucosa Bucal , Interleucina-6 , Mediadores da Inflamação
7.
Int J Mol Sci ; 23(15)2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35955486

RESUMO

Dendritic cells (DC) and leukaemia derived DC (DCleu) are potent stimulators of anti-leukaemic activity in acute myeloid leukaemia (AML) and can be generated from mononuclear cells in vitro following standard DC/DCleu-generating protocols. With respect to future clinical applications though, DC/DCleu-generating protocols specifically designed for application in a whole-blood-(WB)-environment must be established. Therefore, we developed ten new DC/DCleu-generating protocols (kits; Kit-A/-C/-D/-E/-F/-G/-H/-I/-K/-M) for the generation of DC/DCleu from leukaemic WB, containing calcium-ionophore, granulocyte-macrophage-colony-stimulating-factor (GM-CSF), tumour-necrosis-factor-alpha, prostaglandin-E1 (PGE1), prostaglandin-E2 (PGE2) and/or picibanil (OK-432). All protocols were evaluated regarding their performance in generating DC/DCleu using refined classification and/or ranking systems; DC/DCleu were evaluated regarding their performance in stimulating anti-leukaemic activity using a cytotoxicity fluorolysis assay. Overall, we found the new kits capable to generate (mature) DC/DCleu from leukaemic WB. Through refined classification and ranking systems, we were able to select Kit-I (GM-CSF + OK-432), -K (GM-CSF + PGE2) and -M (GM-CSF + PGE1) as the most efficient kits in generating (mature) DC/DCleu, which are further competent to stimulate immunoreactive cells to show an improved anti-leukaemic cytotoxicity as well. This great performance of Kit-I, -K and -M in mediating DC/DCleu-based anti-leukaemic immunity in a WB-environment in vitro constitutes an important and directive step for translating DC/DCleu-based immunotherapy of AML into clinical application.


Assuntos
Fator Estimulador de Colônias de Granulócitos e Macrófagos , Leucemia Mieloide Aguda , Células Dendríticas , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Humanos , Leucemia Mieloide Aguda/terapia , Picibanil , Prostaglandinas , Prostaglandinas E
8.
Clin Immunol ; 242: 109083, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35908638

RESUMO

(Leukaemia derived) dendritic cells (DC, DCleu) are potent stimulators of anti-leukaemic activity in acute myeloid leukaemia (AML) and can be generated with immunomodulatory kits containing granulocyte-macrophage-colony-stimulating-factor (GM-CSF), prostaglandin-E1 (PGE1), prostaglandin-E2 (PGE2) and/or picibanil (OK-321). Potential adverse effects initiated through kits, especially the proliferation of blasts, must be ruled out to ensure treatment safety. We quantified proliferating blasts with the proliferation markers CD71 and Ki-67 and the novel proliferation marker IPO-38 before and after kit treatment ex vivo. IPO-38 hereby appeared to be the most sensitive marker; a combination with CD71 may add value when assessing proliferation kinetics. Kit treatment did not or only slightly (<5%) induce blast proliferation in most cases. An induction of blast proliferation was only found in single cases and could be compensated by DCleu-induced anti-leukaemic activity in most times. Overall, we appraise kit treatment to be safe in vivo.


Assuntos
Leucemia Mieloide Aguda , Biomarcadores , Proliferação de Células , Células Dendríticas , Humanos , Prostaglandinas/farmacologia , Prostaglandinas E/farmacologia
9.
Immunobiology ; 227(4): 152237, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35749805

RESUMO

The blastmodulatory Kit-M, composed of granulocyte-macrophage colony-stimulating-factor (GM-CSF) and Prostaglandin E1 (PGE1), is known to convert myeloid leukaemic blasts (from AML patients) into leukaemia derived dendritic cells (DCleu), which activate immunoreactive cells to gain antileukemic/leukaemia-specific activity. In this study we had a special focus on the influence of Kit-M treated, DC/DCleu containing patients'whole blood (WB, n = 16) on the provision of immunosuppressive regulatory T-cells. We could confirm that Kit-M significantly increased frequencies of (mature) dendritic cells (DC) and DCleu from leukemic whole blood (WB) without induction of blast proliferation. After mixed lymphocyte culture (MLC) with patients' T-cells we confirmed that DCleu mediated leukemia-specific responses- going along with activated and leukemia-specific T- and NK-cells in an intracellular cytokine staining assay (ICS) and a degranulation assay (Deg)- resulted in an increased anti-leukemic cytotoxicity (Cytotoxicity Fluorolysis Assay = CTX). We could demonstrate that (leukemia-specific) CD4+ and CD8+ regulatory T-cell population (Treg) decreased significantly after MLC compared to controls. We found significant positive correlations of leukemia-specific CD3+CD4+ cells with frequencies of (mature) DCleu. Achieved anti-leukemic cytotoxicity correlated significantly positive with leukemia-specific CD3+CD8+ cells and significantly negatively with (leukemia-specific) Treg. In summary we demonstrate that immunesuppressive (leukemia-specific) regulatory T-cells are significantly downregulated after Kit-M triggered MLC- going along with a (reinstalled) antileukemic reactivity of the immune system (as demonstrated with functional assays ICS, Deg, CTX).


Assuntos
Leucemia Mieloide Aguda , Linfócitos T Reguladores , Células Dendríticas , Humanos , Imunofenotipagem , Ativação Linfocitária
10.
BMC Oral Health ; 22(1): 148, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35477563

RESUMO

BACKGROUND: Orthodontic treatment with fixed appliances is often necessary to correct malocclusions in adolescence or adulthood. However, oral hygiene is complicated by appliances, and prior studies indicate that they may trigger oral inflammation and dysbiosis of the oral microbiota, especially during the first 3 months after insertion, and, thus, may present a risk for inflammatory oral diseases. In recent periodontal therapeutic studies, probiotics have been applied to improve clinical parameters and reduce local inflammation. However, limited knowledge exists concerning the effects of probiotics in orthodontics. Therefore, the aim of our study is to evaluate the impact of probiotics during orthodontic treatment. METHODS: This study is a monocentric, randomized, double blind, controlled clinical study to investigate the effectiveness of daily adjuvant use of Limosilactobacillus reuteri (Prodentis®-lozenges, DSM 17938, ATCC PTA 5289) versus control lozenges during the first three months of orthodontic treatment with fixed appliances. Following power analysis, a total of 34 adolescent patients (age 12-17) and 34 adult patients (18 years and older) undergoing orthodontic treatment at the University Hospital Erlangen will be assigned into 2 parallel groups using a randomization plan for each age group. The primary outcome measure is the change of the gingival index after 4 weeks. Secondary outcomes include the probing pocket depth, the modified plaque index, the composition of the oral microbiota, the local cytokine expression and-only for adults-serum cytokine levels and the frequencies of cells of the innate and adaptive immune system in peripheral blood. DISCUSSION: Preventive strategies in everyday orthodontic practice include oral hygiene instructions and regular dental cleaning. Innovative methods, like adjuvant use of oral probiotics, are missing. The aim of this study is to analyse, whether probiotics can improve clinical parameters, reduce inflammation and prevent dysbiosis of the oral microbiota during orthodontic treatment. If successful, this study will provide the basis for a new strategy of prophylaxis of oral dysbiosis-related diseases during treatment with fixed appliances. TRIAL REGISTRATION: This trial is registered at ClinicalTrials.gov in two parts under the number NCT04598633 (Adolescents, registration date 10/22/2020), and NCT04606186 (Adults, registration date 10/28/2020).


Assuntos
Microbiota , Probióticos , Adolescente , Adulto , Criança , Citocinas , Disbiose , Humanos , Imunidade , Inflamação , Periodonto , Probióticos/uso terapêutico , Estudos Prospectivos , Ensaios Clínicos Controlados Aleatórios como Assunto
11.
Cancer Gene Ther ; 29(11): 1600-1615, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35477770

RESUMO

Extracellular Vesicles (EVs) are membranous vesicles produced by all cells under physiological and pathological conditions. In hematological malignancies, tumor-derived EVs might reprogram the bone marrow environment, suppress antileukemic immunity, mediate drug resistance and interfere with immunotherapies. EVs collected from the serum of leukemic samples might correlate with disease stage, drug-/immunological resistance, or might correlate with antileukemic immunity/immune response. Special EV surface protein patterns in serum have the potential as noninvasive biomarker candidates to distinguish several disease-related patterns ex vivo or in vivo. EVs were isolated from the serum of acute myeloid leukemia (AML), acute lymphoid leukemia (ALL), chronic lymphoid leukemia (CLL) patients, and healthy volunteers. EVs were characterized by transmission electron microscopy and fluorescence nanoparticle tracking analysis, and EV surface protein profiles were analyzed by multiplex bead-based flow cytometry to identify tumor- or immune system-related EVs of AML, ALL, CLL, and healthy samples. Aiming to provide proof-of-concept evidence and methodology for the potential role of serum-derived EVs as biomarkers in leukemic versus healthy samples in this study, we hope to pave the way for future detection of promising biomarkers for imminent disease progression and the identification of potential targets to be used in a therapeutic strategy.


Assuntos
Vesículas Extracelulares , Neoplasias Hematológicas , Leucemia Linfocítica Crônica de Células B , Leucemia Mieloide Aguda , Humanos , Citometria de Fluxo , Vesículas Extracelulares/metabolismo , Neoplasias Hematológicas/diagnóstico , Neoplasias Hematológicas/terapia , Biomarcadores/metabolismo , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/terapia , Proteínas de Membrana/metabolismo
12.
Transfus Med Hemother ; 49(1): 44-61, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35221867

RESUMO

INTRODUCTION: Myeloid leukaemic blasts can be converted into leukaemia-derived dendritic cells (DCleu), characterised by the simultaneous expression of dendritic- and leukaemia-associated antigens, which have the competence to prime and enhance (leukaemia-specific) immune responses with the whole leukaemic antigen repertoire. To display and further specify dendritic cell (DC)- and DCleu-mediated immune responses, we analysed the interferon gamma (IFNy) secretion of innate and adaptive immune cells. METHODS: DC/DCleu were generated from leukaemic whole blood (WB) with (blast)modulatory Kit-I (granulocyte-macrophage colony-stimulating factor [GM-CSF] + Picibanil [OK-432]) and Kit-M (GM-CSF + prostaglandin E1) and were used to stimulate T cell-enriched immunoreactive cells. Initiated anti-leukaemic cytotoxicity was investigated with a cytotoxicity fluorolysis assay. Initiated IFNy secretion of T, NK, CIK, and iNKT cells was investigated with a cytokine secretion assay (CSA). IFNy positivity was additionally evaluated with an intracellular cytokine assay (ICA). Recent activation of leukaemia-specific cells was verified through addition of leukaemia-associated antigens (LAA; WT-1 and Prame). RESULTS: We found Kit-I and Kit-M competent to generate mature DC and DCleu from leukaemic WB without induction of blast proliferation. Stimulation of immunoreactive cells with DC/DCleu regularly resulted in an increased anti-leukaemic cytotoxicity and increased IFNy secretion of T, NK, and CIK cells, pointing to the significant role of DC/DCleu in leukaemia-specific alongside anti-leukaemic reactions. Interestingly, an addition of LAA did not further increase IFNy secretion, suggesting an efficient activation of leukaemia-specific cells. Here, both the CSA and ICA yielded comparable frequencies of IFNy-positive cells. Remarkably, the anti-leukaemic cytotoxicity positively correlated with the IFNy secretion in TCD3+, TCD4+, TCD8+, and NKCD56+ cells. CONCLUSION: Ultimately, the IFNy secretion of innate and adaptive immune cells appeared to be a suitable parameter to assess and monitor the efficacy of in vitro and potentially in vivo acute myeloid leukaemia immunotherapy. The CSA in this regard proved to be a convenient and reproducible technique to detect and phenotypically characterise IFNy-secreting cells. In respect to our studies on DC-based immunomodulation, we were able to display the potential of DC/DCleu to induce or improve leukaemia-specific and anti-leukaemic activity.

13.
J Immunother ; 45(2): 104-118, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34864807

RESUMO

Allogeneic stem cell transplantation (alloSCT) is the treatment of choice for many patients with acute myeloid leukemia (AML) and myelodysplastic syndrome. The presentation of leukemic or allospecific antigens by malignant blasts is regarded as a crucial trigger for an effective allogeneic immune response. Conversely, insufficient stimulatory capacity by the leukemic blasts is thought to be a relevant escape mechanism from cellular immunotherapy (alloSCT). Our purpose was to test, whether the ability of malignant blasts to differentiate in vitro toward dendritic cells of leukemic origin (DCleu) is associated with clinical outcome. We isolated leukemic blasts from peripheral blood or bone marrow of AML and myelodysplastic syndrome patients before alloSCT (n=47) or at relapse after alloSCT (n=22). A panel of 6 different assays was used to generate DCleu in vitro. Results were correlated with clinical outcome. DCleu could be generated from all 69 samples. Significantly higher mean frequencies of DCleu were found in clinical long-term responders versus nonresponders to SCT (76.8% vs. 58.8%, P=0.006). Vice versa, the chance for response to SCT was significantly higher, if a DCleu+/dendritic cells (DC) ratio of >50% could be reached in vitro (P=0.004). Those patients were characterized by a longer time to relapse (P=0.04) and by a higher probability for leukemia-free survival (P=0.005). In vitro generation of DC and DCleu from leukemic blasts correlated with the clinical outcome. This observation may support a role of leukemic antigen presentation by "leukemia-derived DC" for the stimulation of an allogeneic immune response in AML.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , Células Dendríticas , Humanos , Leucemia Mieloide Aguda/terapia , Ativação Linfocitária , Síndromes Mielodisplásicas/patologia , Síndromes Mielodisplásicas/terapia , Recidiva
14.
Int J Mol Sci ; 24(1)2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36613907

RESUMO

Integrin beta 7 (ß7), a subunit of the integrin receptor, is expressed on the surface of immune cells and mediates cell-cell adhesions and interactions, e.g., antitumor or autoimmune reactions. Here, we analyzed, whether the stimulation of immune cells by dendritic cells (of leukemic derivation in AML patients or of monocyte derivation in healthy donors) leads to increased/leukemia-specific ß7 expression in immune cells after T-cell-enriched mixed lymphocyte culture-finally leading to improved antileukemic cytotoxicity. Healthy, as well as AML and MDS patients' whole blood (WB) was treated with Kit-M (granulocyte-macrophage colony-stimulating factor (GM-CSF) + prostaglandin E1 (PGE1)) or Kit-I (GM-CSF + Picibanil) in order to generate DCs (DCleu or monocyte-derived DC), which were then used as stimulator cells in MLC. To quantify antigen/leukemia-specific/antileukemic functionality, a degranulation assay (DEG), an intracellular cytokine assay (INTCYT) and a cytotoxicity fluorolysis assay (CTX) were used. (Leukemia-specific) cell subtypes were quantified via flow cytometry. The Kit treatment of WB (compared to the control) resulted in the generation of DC/DCleu, which induced increased activation of innate and adaptive cells after MLC. Kit-pretreated WB (vs. the control) led to significantly increased frequencies of ß7-expressing T-cells, degranulating and intracellular cytokine-producing ß7-expressing immune cells and, in patients' samples, increased blast lysis. Positive correlations were found between the Kit-M-mediated improvement of blast lysis (vs. the control) and frequencies of ß7-expressing T-cells. Our findings indicate that DC-based immune therapies might be able to specifically activate the immune system against blasts going along with increased frequencies of (leukemia-specific) ß7-expressing immune cells. Furthermore, ß7 might qualify as a predictor for the efficiency and the success of AML and/or MDS therapies.


Assuntos
Fator Estimulador de Colônias de Granulócitos e Macrófagos , Leucemia Mieloide Aguda , Humanos , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Células Dendríticas , Leucemia Mieloide Aguda/metabolismo , Ativação Linfocitária , Citocinas/metabolismo , Integrinas/metabolismo
15.
Anticancer Res ; 41(8): 3891-3898, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34281851

RESUMO

BACKGROUND/AIM: Matrix metalloproteinases (MMPs) degrade extracellular matrix and process regulatory proteins. Recently, a membrane-bound 82kDa variant of proMMP-9 identified on myeloid blasts was shown to be associated with prognosis. PATIENTS AND METHODS: To investigate the role of 82kDa proMMP-9 with acute lymphoblastic leukemia (ALL) and chronic lymphoid leukemia (CLL), we performed flow-cytometry analysis of expression on ALL blasts (n=18) and CLL lymphocytes (n=21) from blood and correlated data with clinical parameters. RESULTS: In ALL, mature B-linear blasts expressed higher levels of 82kDa proMMP-9 compared to T-linear blasts. Elevated levels of 82kDa proMMP-9 were found in elderly patients and at patients with relapse. No correlation was observed on blood cells and extramedullary disease. In CLL, the 82kDa proMMP-9 expression did not correlate with any of the clinical parameters. CONCLUSION: Our findings suggest that higher levels of 82kDa proMMP-9 expression on blast cells may correlate with a more unfavorable ALL-subtype. Further studies are required to clarify the prognostic role of the 82kDa pro-MMP-9 expression.


Assuntos
Precursores Enzimáticos/imunologia , Leucemia Linfocítica Crônica de Células B/imunologia , Linfócitos/imunologia , Metaloproteinase 9 da Matriz/imunologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/imunologia , Adolescente , Adulto , Idoso , Células da Medula Óssea/citologia , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Adulto Jovem
16.
Int J Mol Sci ; 21(24)2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33371393

RESUMO

Natural killer (NK) cells, as members of the innate immune system, and natural killer T (NKT) cells, bridging innate and adaptive immunity, play a prominent role in chronic inflammatory diseases and cancerogenesis, yet have scarcely been examined in oral diseases. Therefore, systematic research on the latest literature focusing on NK/NKT cell-mediated mechanisms in periodontal disease, including the time period 1988-2020, was carried out in MEDLINE (PubMed) using a predetermined search strategy, with a final selection of 25 studies. The results showed that NK cells tend to have rather proinflammatory influences via cytokine production, cytotoxic effects, dendritic-cell-crosstalk, and autoimmune reactions, while contrarily, NKT cell-mediated mechanisms were proinflammatory and immunoregulatory, ranging from protective effects via B-cell-regulation, specific antibody production, and the suppression of autoimmunity to destructive effects via cytokine production, dendritic-cell-crosstalk, and T-/B-cell interactions. Since NK cells seem to have a proinflammatory role in periodontitis, further research should focus on the proinflammatory and immunoregulatory properties of NKT cells in order to create, in addition to antibacterial strategies in dental inflammatory disease, novel anti-inflammatory therapeutic approaches modulating host immunity towards dental health.


Assuntos
Imunidade Inata/imunologia , Células Matadoras Naturais/imunologia , Células T Matadoras Naturais/imunologia , Doenças Periodontais/imunologia , Doenças Periodontais/patologia , Animais , Humanos
17.
J Immunother ; 43(6): 204-215, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32502139

RESUMO

Several tumor-associated antigens (TAAs) were recently identified, that could qualify as targets for immunotherapy, they could qualify (on RNA-level) for monitoring of tumor load. Here, we studied the expression levels of the immunogenic antigens PRAME (preferentially expressed antigen of melanoma), WT1 (Wilms' tumor gene), and PR3 (proteinase 3) on myeloid blasts by real-time quantitative polymerase chain reaction and correlated these data to the state and course of disease and to the defined subgroups of acute myeloid leukemia (AML). At first diagnoses, 41 of 47 patients tested showed overexpression of PRAME (87%), 38 of WT1 (81%), and 26 of PR3 (55%), with the highest expression levels for PRAME (2048-fold), followed by WT1 (486-fold) and PR3 (196-fold). Thereby, with 70%, the most frequent combination at first diagnoses was detected to be PRAME and WT1 (33/47 patients). Overall, 21 patients (45%) revealed overexpression for all 3 TAAs. Moreover, the highest expression levels of PRAME were found to be correlated with the FAB subtype M5, cytogenetic unfavorable risk groups, and AMLs arising from myelodysplasia (secondary AML; P=0.02). To compare TAA expression levels in the course of disease, expression data were calculatory adjusted to 100% blasts, revealing a relative increase in the PRAME expression levels during the course of persistent disease (3/4 cases). Independent of stage of disease, by trend, higher TAA expression levels were found on blasts derived from peripheral blood than those derived from the bone marrow. In conclusion, it is suggested that vaccine strategies for cancer immunotherapy should comprise different TAA peptides anticipating the diverse TAA expression levels on blasts evolving during the course of disease or treatment.


Assuntos
Antígenos de Neoplasias/genética , Expressão Gênica , Leucemia Mieloide Aguda/genética , Peptídeo Hidrolases/genética , RNA Mensageiro , Proteínas WT1/genética , Biomarcadores Tumorais , Linhagem Celular Tumoral , Gerenciamento Clínico , Feminino , Regulação Leucêmica da Expressão Gênica , Humanos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/terapia , Masculino , Estadiamento de Neoplasias , Prognóstico , Estudos Retrospectivos
18.
Clin Immunol ; 217: 108467, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32464186

RESUMO

New (non-immunotherapeutic) treatment-strategies for AML/MDS-patients are under development. Dendritic cells (DCs) and 'leukemia-derived DC' (DCleu) connect the innate and the adaptive immunesystem and (re-)activate it, in their capacity as professional antigen-presenting cells (APCs). They can be generated ex vivo from peripheral blood mononuclear cells (PBMNCs) or whole blood (WB), containing the -physiological-cellular/soluble microenvironment of individual patients using various DC/DCleu-generating methods or (for WB) minimalized 'Kits', containing granulocyte-macrophage-colony-stimulating-factor (GM-CSF) and a second response-modifier. Proof for DC/DCleu-mediated activation of the immune-system after T-cell-enriched mixed lymphocyte culture (MLC) is done by flowcytometry, demonstrating increased fractions of certain activated, leukemia-specific or antileukemic cell-subsets of the innate and the adaptive immune-system. Generation of DC/DCleu is possible independent of patients' age, MHC-, mutation- or transplantation-status. In vivo-treatment of AML-/MDS-patients with blast-modulating, DC/DCleu- inducing 'Kits' could contribute to create migratory DCs, as well as antileukemically reactivated and memory-mediating immune-cells, which patrol tissue and blood and could contribute to stabilizing disease or remissions.


Assuntos
Células Dendríticas/imunologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Imunoterapia/métodos , Leucemia Mieloide Aguda/terapia , Síndromes Mielodisplásicas/terapia , Imunidade Adaptativa/imunologia , Células Dendríticas/citologia , Humanos , Imunidade Inata/imunologia , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/imunologia , Ativação Linfocitária/imunologia
20.
Transfus Med Hemother ; 47(6): 432-443, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33442338

RESUMO

The prognosis of elderly patients with acute myeloid leukemia (AML) and high-grade myelodysplastic syndrome (MDS) is limited due to the lack of therapy options and high relapse rates. Dendritic cell (DC)-based immunotherapy seems to be a promising treatment tool. DC are potent antigen-presenting cells and play a pivotal role on the interface of the innate and the adaptive immune system. Myeloid leukemia blasts can be converted to DC of leukemic origin (DCleu), expressing costimulatory molecules along with the whole leukemic antigen repertoire of individual patients. These generated DCleu are potent stimulators of various immune reactive cells and increase antileukemic immunity ex vivo. Here we review the generating process of DC/DCleu from leukemic peripheral blood mononuclear cells as well as directly from leukemic whole blood with "minimized" Kits to simulate physiological conditions ex vivo. The purpose of adoptive cell transfer of DC/DCleu as a vaccination strategy is discussed. A new potential therapy option with Kits for patients with myeloid leukemia, which would render an adoptive DC/DCleu transfer unnecessary, is presented. In summary, DC/DCleu-based therapies seem to be promising treatment tools for patients with AML or MDS but ongoing research including trials in animals and humans have to be performed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...