Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Immunol ; 47(11): 1982-1988, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28833031

RESUMO

The NF-κB regulator A20 limits inflammation by providing negative feedback in myeloid cells and B cells. Functional lack of A20 has been linked to several inflammatory and autoimmune diseases. To define how A20 affects the functionality of T effector cells in a highly inflammatory environment, we performed conventional allogeneic hematopoietic stem cell transplantation (allo-HSCT) with A20-deficient CD4+ and CD8+ donor T cells in mice. Severity and mortality of graft-versus-host disease (GVHD) after allo-HSCT was drastically reduced in recipients transplanted with conventional doses of A20-deficient T cells. Consistently, we found that the A20-deficient donor T-cell compartment was strongly diminished at various timepoints after allo-HSCT. However, proportionally more A20-deficient donor T cells produced IFN-γ and systemic inflammation was elevated early after allo-HSCT. Consequently, increasing the dose of transplanted A20-deficient T cells reversed the original phenotype and resulted in enhanced GVHD mortality compared to recipients that received A20+/+ T cells. Still, A20-deficient T cells, activated either through T cell receptor-dependent or -independent mechanisms, were less viable than control A20+/+ T cells, highlighting that A20 balances both, T-cell activation and survival. Thus, our findings suggest that targeting A20 in T cells may allow to modulate T-cell-mediated inflammatory diseases like GVHD.


Assuntos
Doença Enxerto-Hospedeiro/imunologia , Linfócitos T/imunologia , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/imunologia , Animais , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Transplante Homólogo
2.
J Immunol ; 199(7): 2356-2365, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28842469

RESUMO

Maintaining immune tolerance requires the production of Foxp3-expressing regulatory T (Treg) cells in the thymus. Activation of NF-κB transcription factors is critically required for Treg cell development, partly via initiating Foxp3 expression. NF-κB activation is controlled by a negative feedback regulation through the ubiquitin editing enzyme A20, which reduces proinflammatory signaling in myeloid cells and B cells. In naive CD4+ T cells, A20 prevents kinase RIPK3-dependent necroptosis. Using mice deficient for A20 in T lineage cells, we show that thymic and peripheral Treg cell compartments are quantitatively enlarged because of a cell-intrinsic developmental advantage of A20-deficient thymic Treg differentiation. A20-deficient thymic Treg cells exhibit reduced dependence on IL-2 but unchanged rates of proliferation and apoptosis. Activation of the NF-κB transcription factor RelA was enhanced, whereas nuclear translocation of c-Rel was decreased in A20-deficient thymic Treg cells. Furthermore, we found that the increase in Treg cells in T cell-specific A20-deficient mice was already observed in CD4+ single-positive CD25+ GITR+ Foxp3- thymic Treg cell progenitors. Treg cell precursors expressed high levels of the tumor necrosis factor receptor superfamily molecule GITR, whose stimulation is closely linked to thymic Treg cell development. A20-deficient Treg cells efficiently suppressed effector T cell-mediated graft-versus-host disease after allogeneic hematopoietic stem cell transplantation, suggesting normal suppressive function. Holding thymic production of natural Treg cells in check, A20 thus integrates Treg cell activity and increased effector T cell survival into an efficient CD4+ T cell response.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T Reguladores/fisiologia , Timo/citologia , Timo/fisiologia , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/genética , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/metabolismo , Animais , Apoptose , Diferenciação Celular , Citometria de Fluxo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica , Proteína Relacionada a TNFR Induzida por Glucocorticoide/genética , Doença Enxerto-Hospedeiro/prevenção & controle , Interleucina-2/imunologia , Ativação Linfocitária , Camundongos , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-rel/genética , Transdução de Sinais , Transplante de Células-Tronco , Timo/imunologia , Fator de Transcrição RelA/genética , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/deficiência
3.
Eur J Immunol ; 47(5): 872-879, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28295265

RESUMO

Activation of the C-type lectin receptor Dectin-1 by ß-glucans triggers multiple signals within DCs that result in activation of innate immunity. While these mechanisms can potently prime CD8+ cytotoxic T-cell (CTL) responses without additional adjuvants, the Dectin-1 effector pathways that control CTL induction remain unclear. Here we demonstrate that Dectin-1-induced CTL cross-priming in mice does not require inflammasome activation but strictly depends on the adapter protein Card9 in vitro. In vivo, Dectin-1-mediated Card9 activation after vaccination drives both expansion and activation of Ag-specific CTLs, resulting in long-lasting CTL responses that are sufficient to protect mice from tumor challenge. This Dectin-1-induced antitumor immune response was independent of NK cell function and completely abrogated in Card9-deficient mice. Thus, our results demonstrate that Dectin-1-triggered Card9 signaling but not inflammasome activation can potently cross-prime Ag-specific CTLs, suggesting that this pathway would be a candidate for immunotherapy and vaccine development.


Assuntos
Proteínas Adaptadoras de Sinalização CARD/metabolismo , Lectinas Tipo C/metabolismo , Neoplasias/imunologia , Linfócitos T Citotóxicos/imunologia , Animais , Proteínas Adaptadoras de Sinalização CARD/deficiência , Proteínas Adaptadoras de Sinalização CARD/genética , Apresentação Cruzada , Imunidade Inata , Inflamassomos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias/fisiopatologia , Transdução de Sinais , Vacinação
4.
PLoS One ; 10(11): e0142523, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26565413

RESUMO

Mycoplasma are a frequent and occult contaminant of cell cultures, whereby these prokaryotic organisms can modify many aspects of cell physiology, rendering experiments that are conducted with such contaminated cells problematic. Chronic Mycoplasma contamination in human monocytic cells lines has been associated with suppressed Toll-like receptor (TLR) function. In contrast, we show here that components derived from a Mycoplasma hyorhinis-infected cell line can activate innate immunity in non-infected primary immune cells. Release of pro-inflammatory cytokines such as IL-6 by dendritic cells in response to Mycoplasma hyorhinis-infected cell components was critically dependent on the adapter protein MyD88 but only partially on TLR2. Unlike canonical TLR2 signaling that is triggered in response to the detection of Mycoplasma infection, innate immune activation by components of Mycoplasma-infected cells was inhibited by chloroquine treatment and sensitive to protease treatment. We further show that in plasmacytoid dendritic cells, soluble factors from Mycoplasma hyorhinis-infected cells induce the production of large amounts of IFN-α. We conclude that Mycoplasma hyorhinis-infected cell lines release protein factors that can potently activate co-cultured innate immune cells via a previously unrecognized mechanism, thus limiting the validity of such co-culture experiments.


Assuntos
Imunidade Inata , Interleucina-6/imunologia , Infecções por Mycoplasma/imunologia , Mycoplasma hyorhinis/imunologia , Fator 88 de Diferenciação Mieloide/imunologia , Receptor 2 Toll-Like/imunologia , Animais , Linhagem Celular , Linhagem Celular Tumoral , Células Cultivadas , Técnicas de Cocultura , Células Dendríticas/imunologia , Feminino , Humanos , Interferon-alfa/imunologia , Camundongos Endogâmicos C57BL
5.
Blood ; 123(24): 3832-42, 2014 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-24711661

RESUMO

Graft-versus-host-disease (GVHD) is a severe complication of allogeneic hematopoietic cell transplantation (allo-HCT) characterized by the production of high levels of proinflammatory cytokines. Activated Janus kinases (JAKs) are required for T-effector cell responses in different inflammatory diseases, and their blockade could potently reduce acute GVHD. We observed that inhibition of JAK1/2 signaling resulted in reduced proliferation of effector T cells and suppression of proinflammatory cytokine production in response to alloantigen in mice. In vivo JAK 1/2 inhibition improved survival of mice developing acute GVHD and reduced histopathological GVHD grading, serum levels of proinflammatory cytokines, and expansion of alloreactive luc-transgenic T cells. Mechanistically, we could show that ruxolitinib impaired differentiation of CD4(+) T cells into IFN-γ- and IL17A-producing cells, and that both T-cell phenotypes are linked to GVHD. Conversely, ruxolitinib treatment in allo-HCT recipients increased FoxP3(+) regulatory T cells, which are linked to immunologic tolerance. Based on these results, we treated 6 patients with steroid-refractory GVHD with ruxolitinib. All patients responded with respect to clinical GVHD symptoms and serum levels of proinflammatory cytokines. In summary, ruxolitinib represents a novel targeted approach in GVHD by suppression of proinflammatory signaling that mediates tissue damage and by promotion of tolerogenic Treg cells.


Assuntos
Doença Enxerto-Hospedeiro/tratamento farmacológico , Janus Quinase 2/antagonistas & inibidores , Inibidores de Proteínas Quinases/uso terapêutico , Pirazóis/uso terapêutico , Animais , Incompatibilidade de Grupos Sanguíneos/complicações , Células Cultivadas , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Feminino , Doença Enxerto-Hospedeiro/etiologia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Terapia de Alvo Molecular , Nitrilas , Pirimidinas , Índice de Gravidade de Doença , Transplante Homólogo/efeitos adversos , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...