Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Alzheimers Dis Rep ; 6(1): 31-41, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35360272

RESUMO

Background: Alzheimer's disease (AD) remains to date an incurable disease with a long asymptomatic phase. Early diagnosis in peripheral biofluids has emerged as key for identifying subjects at risk and developing therapeutics and preventative approaches. Objective: We apply proteomics discovery to identify salivary diagnostic biomarkers for AD, which are suitable for self-sampling and longitudinal biomonitoring during aging. Methods: 57 participants were recruited for the study and were categorized into Cognitively normal (CNh) (n = 19), mild cognitive impaired (MCI) (n = 21), and Alzheimer's disease (AD) (n = 17). On a subset of subjects, 3 CNh and 3 mild AD, shot-gun filter aided sample preparation (FASP) proteomics and liquid chromatography mass spectroscopy (LC-MS/MS) was employed in saliva and cerebrospinal fluid (CSF) to identify neural-derived proteins. The protein level of salivary Transthyretin (TTR) was validated using western blot analysis across groups. Results: We found that 19.8% of the proteins in saliva are shared with CSF. When we compared the saliva and CSF proteome, 24 hits were decreased with only one protein expressed more. Among the differentially expressed proteins, TTR with reported function in amyloid misfolding, shows a significant drop in AD samples, confirmed by western blot showing a 0.5-fold reduction in MCI and AD compared to CNh. Conclusion: A reduction in salivary TTR appears with the onset of cognitive symptoms. More in general, the proteomic profiling of saliva shows a plethora of biomarkers worth pursuing as non-invasive hallmarks of dementia in the preclinical stage.

2.
Front Microbiol ; 13: 838026, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35283847

RESUMO

Organohalide respiration (OHR) is a bacterial anaerobic process that uses halogenated compounds, e.g., tetrachloroethene (PCE), as terminal electron acceptors. Our model organisms are Dehalobacter restrictus strain PER-K23, an obligate OHR bacterium (OHRB), and Desulfitobacterium hafniense strain TCE1, a bacterium with a versatile metabolism. The key enzyme is the PCE reductive dehalogenase (PceA) that is encoded in the highly conserved gene cluster (pceABCT) in both above-mentioned strains, and in other Firmicutes OHRB. To date, the functions of PceA and PceT, a dedicated molecular chaperone for the maturation of PceA, are well defined. However, the role of PceB and PceC are still not elucidated. We present a multilevel study aiming at deciphering the stoichiometry of pceABCT individual gene products. The investigation was assessed at RNA level by reverse transcription and (quantitative) polymerase chain reaction, while at protein level, proteomic analyses based on parallel reaction monitoring were performed to quantify the Pce proteins in cell-free extracts as well as in soluble and membrane fractions of both strains using heavy-labeled reference peptides. At RNA level, our results confirmed the co-transcription of all pce genes, while the quantitative analysis revealed a relative stoichiometry of the gene transcripts of pceA, pceB, pceC, and pceT at ~ 1.0:3.0:0.1:0.1 in D. restrictus. This trend was not observed in D. hafniense strain TCE1, where no substantial difference was measured for the four genes. At proteomic level, an apparent 2:1 stoichiometry of PceA and PceB was obtained in the membrane fraction, and a low abundance of PceC in comparison to the other two proteins. In the soluble fraction, a 1:1 stoichiometry of PceA and PceT was identified. In summary, we show that the pce gene cluster is transcribed as an operon with, however, a level of transcription that differs for individual genes, an observation that could be explained by post-transcriptional events. Despite challenges in the quantification of integral membrane proteins such as PceB and PceC, the similar abundance of PceA and PceB invites to consider them as forming a membrane-bound PceA2B protein complex, which, in contrast to the proposed model, seems to be devoid of PceC.

3.
Nature ; 552(7684): 187-193, 2017 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-29211722

RESUMO

Alzheimer's disease is a common and devastating disease characterized by aggregation of the amyloid-ß peptide. However, we know relatively little about the underlying molecular mechanisms or how to treat patients with Alzheimer's disease. Here we provide bioinformatic and experimental evidence of a conserved mitochondrial stress response signature present in diseases involving amyloid-ß proteotoxicity in human, mouse and Caenorhabditis elegans that involves the mitochondrial unfolded protein response and mitophagy pathways. Using a worm model of amyloid-ß proteotoxicity, GMC101, we recapitulated mitochondrial features and confirmed that the induction of this mitochondrial stress response was essential for the maintenance of mitochondrial proteostasis and health. Notably, increasing mitochondrial proteostasis by pharmacologically and genetically targeting mitochondrial translation and mitophagy increases the fitness and lifespan of GMC101 worms and reduces amyloid aggregation in cells, worms and in transgenic mouse models of Alzheimer's disease. Our data support the relevance of enhancing mitochondrial proteostasis to delay amyloid-ß proteotoxic diseases, such as Alzheimer's disease.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/toxicidade , Homeostase , Mitocôndrias/metabolismo , Proteostase , Doença de Alzheimer/genética , Animais , Caenorhabditis elegans/genética , Modelos Animais de Doenças , Homeostase/efeitos dos fármacos , Humanos , Masculino , Memória/fisiologia , Camundongos , Camundongos Transgênicos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Mitocôndrias/patologia , Mitofagia/efeitos dos fármacos , Mitofagia/genética , NAD/metabolismo , Niacinamida/análogos & derivados , Niacinamida/farmacologia , Fosforilação Oxidativa , Agregação Patológica de Proteínas/tratamento farmacológico , Biossíntese de Proteínas/efeitos dos fármacos , Proteostase/efeitos dos fármacos , Compostos de Piridínio , Resposta a Proteínas não Dobradas/genética
4.
Alzheimers Dement ; 12(9): 996-1013, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27130892

RESUMO

Amyloid-beta (Aß) peptide oligomerization plays a central role in the pathogenesis of Alzheimer's disease (AD), and Aß oligomers are collectively considered an appealing therapeutic target for the treatment of AD. However, the molecular mechanisms leading to the pathologic accumulation of oligomers are unclear, and the exact structural composition of oligomers is being debated. Using targeted and quantitative mass spectrometry, we reveal site-specific Aß autocleavage during the early phase of aggregation, producing a typical Aß fragment signature and that truncated Aß peptides can form stable oligomeric complexes with full-length Aß peptide. We show that the use of novel anti-Aß antibodies raised against these truncated Aß isoforms allows for monitoring and targeting the accumulation of truncated Aß fragments. Antibody-enabled screening of transgenic models of AD as well as human postmortem brain tissue and cerebrospinal fluid revealed that aggregation-associated Aß cleavage is a highly relevant clinical feature of AD.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Fragmentos de Peptídeos/metabolismo , Agregação Patológica de Proteínas/metabolismo , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/antagonistas & inibidores , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/genética , Animais , Autoanticorpos , Encéfalo/metabolismo , Cromatografia em Gel , Cromatografia Líquida , Eletroforese em Gel de Poliacrilamida , Humanos , Immunoblotting , Espectrometria de Massas , Camundongos Transgênicos , Fragmentos de Peptídeos/antagonistas & inibidores , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/metabolismo , Multimerização Proteica , Estrutura Secundária de Proteína
5.
Anal Chim Acta ; 914: 35-46, 2016 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-26965325

RESUMO

Lipidomics, which focuses on the global study of molecular lipids in biological systems, has been driven tremendously by technical advances in mass spectrometry (MS) instrumentation, particularly high-resolution MS. This requires powerful computational tools that handle the high-throughput lipidomics data analysis. To address this issue, a novel computational tool has been developed for the analysis of high-resolution MS data, including the data pretreatment, visualization, automated identification, deconvolution and quantification of lipid species. The algorithm features the customized generation of a lipid compound library and mass spectral library, which covers the major lipid classes such as glycerolipids, glycerophospholipids and sphingolipids. Next, the algorithm performs least squares resolution of spectra and chromatograms based on the theoretical isotope distribution of molecular ions, which enables automated identification and quantification of molecular lipid species. Currently, this methodology supports analysis of both high and low resolution MS as well as liquid chromatography-MS (LC-MS) lipidomics data. The flexibility of the methodology allows it to be expanded to support more lipid classes and more data interpretation functions, making it a promising tool in lipidomic data analysis.


Assuntos
Algoritmos , Lipídeos/química , Cromatografia Líquida , Análise dos Mínimos Quadrados , Espectrometria de Massas em Tandem
6.
Biol Open ; 4(9): 1143-53, 2015 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-26276100

RESUMO

The observation that the membranes of flagella are enriched in sterols and sphingolipids has led to the hypothesis that flagella might be enriched in raft-forming lipids. However, a detailed lipidomic analysis of flagellar membranes is not available. Novel protocols to detach and isolate intact flagella from Trypanosoma brucei procyclic forms in combination with reverse-phase liquid chromatography high-resolution tandem mass spectrometry allowed us to determine the phospholipid composition of flagellar membranes relative to whole cells. Our analyses revealed that phosphatidylethanolamine, phosphatidylserine, ceramide and the sphingolipids inositol phosphorylceramide and sphingomyelin are enriched in flagella relative to whole cells. In contrast, phosphatidylcholine and phosphatidylinositol are strongly depleted in flagella. Within individual glycerophospholipid classes, we observed a preference for ether-type over diacyl-type molecular species in membranes of flagella. Our study provides direct evidence for a preferential presence of raft-forming phospholipids in flagellar membranes of T. brucei.

7.
Mol Cell Proteomics ; 12(12): 3543-58, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23966418

RESUMO

The development of novel therapies against neurodegenerative disorders requires the ability to detect their early, presymptomatic manifestations in order to enable treatment before irreversible cellular damage occurs. Precocious signs indicative of neurodegeneration include characteristic changes in certain protein levels, which can be used as diagnostic biomarkers when they can be detected in fluids such as blood plasma or cerebrospinal fluid. In the case of synucleinopathies, cerebrospinal alpha-synuclein (α-syn) has attracted great interest as a potential biomarker; however, there is ongoing debate regarding the association between cerebrospinal α-syn levels and neurodegeneration in Parkinson disease and synucleinopathies. Post-translational modifications (PTMs) have emerged as important determinants of α-syn's physiological and pathological functions. Several PTMs are enriched within Lewy bodies and exist at higher levels in α-synucleinopathy brains, suggesting that certain modified forms of α-syn might be more relevant biomarkers than the total α-syn levels. However, the quantification of PTMs in bodily fluids poses several challenges. This review describes the limitations of current immunoassay-based α-syn quantification methods and highlights how these limitations can be overcome using novel mass-spectrometry-based assays. In addition, we describe how advances in chemical synthesis, which have enabled the preparation of α-syn proteins that are site-specifically modified at single or multiple residues, can facilitate the development of more accurate assays for detecting and quantifying α-syn PTMs in health and disease.


Assuntos
Doenças Neurodegenerativas/líquido cefalorraquidiano , Doença de Parkinson/líquido cefalorraquidiano , Fragmentos de Peptídeos/química , Processamento de Proteína Pós-Traducional , alfa-Sinucleína/química , Anticorpos Monoclonais/química , Biomarcadores/sangue , Biomarcadores/líquido cefalorraquidiano , Cromatografia Líquida , Humanos , Corpos de Lewy/química , Corpos de Lewy/patologia , Espectrometria de Massas , Doenças Neurodegenerativas/sangue , Doenças Neurodegenerativas/diagnóstico , Doenças Neurodegenerativas/patologia , Doença de Parkinson/sangue , Doença de Parkinson/diagnóstico , Doença de Parkinson/patologia , Fragmentos de Peptídeos/síntese química , Fragmentos de Peptídeos/isolamento & purificação , Mapeamento de Peptídeos/métodos , Fosforilação , Proteólise , Ubiquitinação , alfa-Sinucleína/sangue , alfa-Sinucleína/líquido cefalorraquidiano
8.
Nat Methods ; 10(6): 570-6, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23584187

RESUMO

The cellular abundance of transcription factors (TFs) is an important determinant of their regulatory activities. Deriving TF copy numbers is therefore crucial to understanding how these proteins control gene expression. We describe a sensitive selected reaction monitoring-based mass spectrometry assay that allowed us to determine the copy numbers of up to ten proteins simultaneously. We applied this approach to profile the absolute levels of key TFs, including PPARγ and RXRα, during terminal differentiation of mouse 3T3-L1 pre-adipocytes. Our analyses revealed that individual TF abundance differs dramatically (from ∼250 to >300,000 copies per nucleus) and that their dynamic range during differentiation can vary up to fivefold. We also formulated a DNA binding model for PPARγ based on TF copy number, binding energetics and local chromatin state. This model explains the increase in PPARγ binding sites during the final differentiation stage that occurs despite a concurrent saturation in PPARγ copy number.


Assuntos
Diferenciação Celular , Proteômica/métodos , Fatores de Transcrição/análise , Células 3T3-L1 , Animais , DNA/metabolismo , Camundongos , PPAR gama/análise , PPAR gama/metabolismo , Receptor X Retinoide alfa/análise
9.
J Biol Chem ; 286(14): 12172-88, 2011 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-21300794

RESUMO

Tissue transglutaminase (TGase) has been implicated in a number of cellular processes and disease states, where the enzymatic actions of TGase may serve in both, cell survival and apoptosis. To date, the precise functional properties of TGase in cell survival or cell death mechanisms still remain elusive. TGase-mediated cross-linking has been reported to account for the formation of insoluble lesions in conformational diseases. We report here that TGase induces intramolecular cross-linking of ß-amyloid peptide (Aß), resulting in structural changes of monomeric Aß. Using high resolution mass spectrometry (MS) of cross-linked Aß peptides, we observed a shift in mass, which is, presumably associated with the loss of NH3 due to enzymatic transamidation activity and hence intramolecular peptide cross-linking. We have observed that a large population of Aß monomers contained an 0.984 Da increase in mass at a glutamine residue, indicating that glutamine 15 serves as an indispensable substrate in TGase-mediated deamidation to glutamate 15. We provide strong analytical evidence on TGase-mediated Aß peptide dimerization, through covalent intermolecular cross-linking and hence the formation of Aß1-40 dimers. Our in depth analyses indicate that TGase-induced post-translational modifications of Aß peptide may serve as an important seed for aggregation.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Transglutaminases/metabolismo , Peptídeos beta-Amiloides/química , Animais , Células CHO , Cromatografia Líquida , Dicroísmo Circular , Cricetinae , Cricetulus , Eletroforese em Gel de Poliacrilamida , Focalização Isoelétrica , Microscopia Eletrônica de Transmissão , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas em Tandem
10.
Chemistry ; 17(2): 486-97, 2011 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-21207565

RESUMO

Tissue transglutaminase (tTGase) catalyzes both deamidation and transamidation of peptides and proteins by using a peptidyl glutamine as primary substrate. A precise consensus sequence for the enzyme is unknown and the ratio between deamidated and transamidated (or cross-linked) reaction products is highly substrate-dependent. Due to its overlapping body distribution with tTGase and ease of manipulation with tandem mass spectrometry, we used the neuropeptide substance P as a model to investigate the associated enzymatic kinetics and reaction products. Online liquid-chromatography Fourier-transform ion-cyclotron-resonance mass spectrometry (FT-ICR MS) combined with electron-capture dissociation (ECD) was employed to study the tTGase-induced modifications of substance P. A particular strength of ECD for peptide-enzyme reaction product monitoring is its ability to distinguish isomeric amino acids, for example, Glu and iso-Glu, by signature product ions. Our studies show that the primary reaction observed is deamidation, with the two consecutive glutamine residues converted sequentially into glutamate: first Gln(5) , and subsequently Gln(6) . We then applied ECD FT-ICR MS to identify the transamidation site on an enzymatically cross-linked peptide, which turned out to correspond to Gln(5) . Three populations of substance-P dimers were detected that differed by the number of deamidated Gln residues. The higher reactivity of Gln(5) over Gln(6) was further confirmed by cross-linking SP with monodansylcadaverine (MDC). Overall, our approach described herein is of a general importance for mapping both enzymatically induced post-translational protein modifications and cross-linking. Finally, in vitro Ca-signaling assays revealed that the main tTGase reaction product, the singly deamidated SP (RPKPEQFFGLM-NH(2) ), has increased agonist potency towards its natural receptor, thus confirming the biologically relevant role of deamidation.


Assuntos
Amidas/química , Substância P/química , Espectrometria de Massas em Tandem/métodos , Transglutaminases/química , Sequência de Aminoácidos , Animais , Glutamina/análise , Glutamina/metabolismo , Cobaias , Humanos , Fígado/enzimologia , Serina Endopeptidases/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Staphylococcus aureus/enzimologia , Substância P/metabolismo , Transglutaminases/metabolismo
11.
J Biol Chem ; 284(19): 13128-42, 2009 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-19164286

RESUMO

Tissue transglutaminase (tTG) has been implicated in the pathogenesis of Parkinson disease (PD). However, exactly how tTG modulates the structural and functional properties of alpha-synuclein (alpha-syn) and contributes to the pathogenesis of PD remains unknown. Using site-directed mutagenesis combined with detailed biophysical and mass spectrometry analyses, we sought to identify the exact residues involved in tTG-catalyzed cross-linking of wild-type alpha-syn and alpha-syn mutants associated with PD. To better understand the structural consequences of each cross-linking reaction, we determined the effect of tTG-catalyzed cross-linking on the oligomerization, fibrillization, and membrane binding of alpha-syn in vitro. Our findings show that tTG-catalyzed cross-linking of monomeric alpha-syn involves multiple cross-links (specifically 2-3). We subjected tTG-catalyzed cross-linked monomeric alpha-syn composed of either wild-type or Gln --> Asn mutants to sequential proteolysis by multiple enzymes and peptide mapping by mass spectrometry. Using this approach, we identified the glutamine and lysine residues involved in tTG-catalyzed intramolecular cross-linking of alpha-syn. These studies demonstrate for the first time that Gln(79) and Gln(109) serve as the primary tTG reactive sites. Mutating both residues to asparagine abolishes tTG-catalyzed cross-linking of alpha-syn and tTG-induced inhibition of alpha-syn fibrillization in vitro. To further elucidate the sequence and structural basis underlying these effects, we identified the lysine residues that form isopeptide bonds with Gln(79) and Gln(109). This study provides mechanistic insight into the sequence and structural basis of the inhibitory effects of tTG on alpha-syn fibrillogenesis in vivo, and it sheds light on the potential role of tTG cross-linking on modulating the physiological and pathogenic properties of alpha-syn.


Assuntos
Reagentes de Ligações Cruzadas/farmacologia , Doença de Parkinson/etiologia , Transglutaminases/metabolismo , alfa-Sinucleína/metabolismo , Benzotiazóis , Dicroísmo Circular , Dimerização , Glutamina/metabolismo , Humanos , Immunoblotting , Mutagênese Sítio-Dirigida , Mutação , Conformação Proteica , Espectrometria de Massas por Ionização por Electrospray , Tiazóis/metabolismo
12.
Hippocampus ; 19(7): 670-6, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19115392

RESUMO

Beta-amyloid (Abeta) is a neuro-peptide implicated in the pathogenesis of Alzheimer's disease (AD). Abeta-peptide is known to disrupt cellular processes, including synaptic plasticity. To date, the precise mechanisms leading to the Abeta-mediated impairment of normal neurophysiological function still remains elusive. A rise in the pro-inflammatory cytokine interleukin-1-beta (IL-1beta) has been previously reported, following Abeta peptide insult. IL-1beta in turn, activates a cascade of pro-apoptotic markers, gradually leading to cell death. In this work, we have investigated the possible protective effects of interleukin-1 receptor antagonist (IL-1ra) on the effects of Abeta-peptide on long-term potentiation (LTP) in the CA1 region of the rat hippocampus in vivo. We observed a significant depression of LTP in the group of animals that received intracerebroventricular (icv) injection of Abeta-peptide (1-40) compared with control animals injected with vehicle. Administration of IL-1ra alone (icv) also resulted in a depression of LTP; however, there was no change in the baseline synaptic response. Combined injection of Abeta(1-40) + IL-1ra caused an attenuation of the effects observed with Abeta(1-40) alone for a period of up to 15 min following LTP induction; rescuing post-tetanicpotentiation (PTP). Gradually however, EPSP-values declined to produce a level of LTP similar to that observed following treatment with Abeta(1-40) alone. These results suggest that the acute Abeta-mediated impairment of PTP and LTP may be partial as a result of activation of an inflammatory response and the release of IL-1beta. The attenuation of plasticity by IL-1ra alone supports the theory that low levels of IL-1beta are required for normal synaptic plasticity. The limited rescue of the Abeta-mediated effects on LTP, in the presence of IL-1ra, may represent the short half life found with this receptor antagonist in vivo.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Hipocampo/fisiologia , Proteína Antagonista do Receptor de Interleucina 1/metabolismo , Potenciação de Longa Duração/fisiologia , Fragmentos de Peptídeos/metabolismo , Análise de Variância , Animais , Estimulação Elétrica , Eletrodos Implantados , Potenciais Pós-Sinápticos Excitadores , Masculino , Probabilidade , Ratos , Ratos Wistar , Fatores de Tempo
13.
Brain Res ; 1197: 135-42, 2008 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-18237717

RESUMO

We have investigated changes in the morphological structure of Abeta1-40 during different incubation time periods at 37 degrees C ranging from 1 h to 7 days using Thioflavin T, Congo red binding and electron microscopy. We found distinctive changes in Abeta assembly demonstrating the formation of beta pleated sheets following 7-day incubation. Here we demonstrate that samples of the same Abeta1-40 peptide that are morphologically distinct can both attenuate hippocampal long-term potentiation (LTP) in the CA1 in vivo. The peptides were applied via intracerebroventricular injection and the effects on synaptic transmission, post-tetanic potentiation (PTP) and LTP were observed. The effects of Abeta1-40 that had either been freshly solubilized (FS-Abeta) or incubated at 37 degrees C for 7 days (7D-Abeta) were examined. FS-Abeta and 7D-Abeta peptide were both found to significantly attenuate LTP, although the assembly states of these peptides appeared to be completely different. Paired pulse facilitation (PPF) with an inter-stimulus interval of 50 ms was also monitored prior to, following peptide injection and 60 min following LTP induction. 7D-Abeta caused an increase in PPF prior to LTP induction and also depressed PTP. Our data demonstrate that, while both forms of the peptide can attenuate LTP, the fibrillar form of the peptide may also influence transmitter release.


Assuntos
Peptídeos beta-Amiloides/administração & dosagem , Peptídeos beta-Amiloides/química , Encéfalo/efeitos dos fármacos , Potenciação de Longa Duração/efeitos dos fármacos , Fragmentos de Peptídeos/administração & dosagem , Fragmentos de Peptídeos/química , Transmissão Sináptica/efeitos dos fármacos , Peptídeos beta-Amiloides/ultraestrutura , Animais , Benzotiazóis , Vermelho Congo , Injeções Intraventriculares , Masculino , Microscopia Eletrônica de Transmissão , Fragmentos de Peptídeos/ultraestrutura , Estrutura Secundária de Proteína , Ratos , Ratos Wistar , Tiazóis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...