Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Genomics ; 21(1): 317, 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32819282

RESUMO

BACKGROUND: The investigation of transcriptome profiles using short reads in non-model organisms, which lack of well-annotated genomes, is limited by partial gene reconstruction and isoform detection. In contrast, long-reads sequencing techniques revealed their potential to generate complete transcript assemblies even when a reference genome is lacking. Cynara cardunculus var. altilis (DC) (cultivated cardoon) is a perennial hardy crop adapted to dry environments with many industrial and nutraceutical applications due to the richness of secondary metabolites mostly produced in flower heads. The investigation of this species benefited from the recent release of a draft genome, but the transcriptome profile during the capitula formation still remains unexplored. In the present study we show a transcriptome analysis of vegetative and inflorescence organs of cultivated cardoon through a novel hybrid RNA-seq assembly approach utilizing both long and short RNA-seq reads. RESULTS: The inclusion of a single Nanopore flow-cell output in a hybrid sequencing approach determined an increase of 15% complete assembled genes and 18% transcript isoforms respect to short reads alone. Among 25,463 assembled unigenes, we identified 578 new genes and updated 13,039 gene models, 11,169 of which were alternatively spliced isoforms. During capitulum development, 3424 genes were differentially expressed and approximately two-thirds were identified as transcription factors including bHLH, MYB, NAC, C2H2 and MADS-box which were highly expressed especially after capitulum opening. We also show the expression dynamics of key genes involved in the production of valuable secondary metabolites of which capitulum is rich such as phenylpropanoids, flavonoids and sesquiterpene lactones. Most of their biosynthetic genes were strongly transcribed in the flower heads with alternative isoforms exhibiting differentially expression levels across the tissues. CONCLUSIONS: This novel hybrid sequencing approach allowed to improve the transcriptome assembly, to update more than half of annotated genes and to identify many novel genes and different alternatively spliced isoforms. This study provides new insights on the flowering cycle in an Asteraceae plant, a valuable resource for plant biology and breeding in Cynara and an effective method for improving gene annotation.


Assuntos
Cynara , Transcriptoma , Cynara/genética , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Anotação de Sequência Molecular , Melhoramento Vegetal
2.
Mol Biol Evol ; 37(5): 1407-1419, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31860092

RESUMO

Thousands of plants have been selected as crops; yet, only a few are fully domesticated. The lack of adaptation to agroecological environments of many crop plants with few characteristic domestication traits potentially has genetic causes. Here, we investigate the incomplete domestication of an ancient grain from the Americas, amaranth. Although three grain amaranth species have been cultivated as crop for millennia, all three lack key domestication traits. We sequenced 121 crop and wild individuals to investigate the genomic signature of repeated incomplete adaptation. Our analysis shows that grain amaranth has been domesticated three times from a single wild ancestor. One trait that has been selected during domestication in all three grain species is the seed color, which changed from dark seeds to white seeds. We were able to map the genetic control of the seed color adaptation to two genomic regions on chromosomes 3 and 9, employing three independent mapping populations. Within the locus on chromosome 9, we identify an MYB-like transcription factor gene, a known regulator for seed color variation in other plant species. We identify a soft selective sweep in this genomic region in one of the crop species but not in the other two species. The demographic analysis of wild and domesticated amaranths revealed a population bottleneck predating the domestication of grain amaranth. Our results indicate that a reduced level of ancestral genetic variation did not prevent the selection of traits with a simple genetic architecture but may have limited the adaptation of complex domestication traits.


Assuntos
Amaranthus/genética , Domesticação , Pigmentação/genética , Sementes , Seleção Genética , Adaptação Biológica/genética , América , Fluxo Gênico , Genoma de Planta , Filogeografia , Locos de Características Quantitativas , Fatores de Transcrição/genética
3.
Ecol Evol ; 9(23): 13017-13029, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31871626

RESUMO

In mountain regions, topological differences on the microscale can strongly affect microclimate and may counteract the average effects of elevation, such as decreasing temperatures. While these interactions are well understood, their effect on plant adaptation is understudied. We investigated winter frost hardiness of Arabidopsis thaliana accessions originating from 13 sites along altitudinal gradients in the Southern Alps during three winters on an experimental field station on the Swabian Jura and compared levels of frost damage with the observed number of frost days and the lowest temperature in eight collection sites. We found that frost hardiness increased with elevation in a log-linear fashion. This is consistent with adaptation to a higher frequency of frost conditions, but also indicates a decreasing rate of change in frost hardiness with increasing elevation. Moreover, the number of frost days measured with temperature loggers at the collection sites correlated much better with frost hardiness than the elevation of collection sites, suggesting that populations were adapted to their local microclimate. Notably, the variance in frost days across sites increased exponentially with elevation. Together, our results suggest that strong microclimate heterogeneity of high alpine environments can preserve functional genetic diversity among small populations. Synthesis: Here, we tested how plant populations differed in their adaptation to frost exposure along an elevation gradient and whether microsite temperatures improve the prediction of frost hardiness. We found that local temperatures, particularly the number of frost days, are a better predictor of the frost hardiness of plants than elevation. This reflects a substantial variance in frost frequency between sites at similar high elevations. We conclude that high mountain regions harbor microsites that differ in their local microclimate and thereby can preserve a high functional genetic diversity among them. Therefore, high mountain regions have the potential to function as a refugium in times of global change.

4.
Plant Cell Environ ; 42(11): 3105-3120, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31272129

RESUMO

Temperature compensation, expressed as the ability to maintain clock characteristics (mainly period) in face of temperature changes, that is, robustness, is considered a key feature of circadian clock systems. In this study, we explore the genetic basis for lack of robustness, that is, plasticity, of circadian clock as reflected by photosynthesis rhythmicity. The clock rhythmicity of a new wild barley reciprocal doubled haploid population was analysed with a high temporal resolution of pulsed amplitude modulation of chlorophyll fluorescence under optimal (22°C) and high (32°C) temperature. This comparison between two environments pointed to the prevalence of clock acceleration under heat. Genotyping by sequencing of doubled haploid lines indicated a rich recombination landscape with minor fixation (less than 8%) for one of the parental alleles. Quantitative genetic analysis included genotype by environment interactions and binary-threshold models. Variation in the circadian rhythm plasticity phenotypes, expressed as change (delta) of period and amplitude under two temperatures, was associated with maternal organelle genome (the plasmotype), as well as with several nuclear loci. This first reported rhythmicity driven by nuclear loci and plasmotype with few identified variants, paves the way for studying impact of cytonuclear variations on clock robustness and on plant adaptation to changing environments.


Assuntos
Núcleo Celular/genética , Relógios Circadianos/genética , Ritmo Circadiano/genética , Hordeum/metabolismo , Temperatura , Adaptação Fisiológica/genética , Adaptação Fisiológica/fisiologia , Adaptação Fisiológica/efeitos da radiação , Núcleo Celular/efeitos da radiação , Relógios Circadianos/efeitos da radiação , Ritmo Circadiano/efeitos da radiação , Citoplasma , Regulação da Expressão Gênica de Plantas , Variação Genética , Genomas de Plastídeos , Genótipo , Modelos Genéticos , Fenótipo , Fotossíntese/efeitos da radiação , Filogenia , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas
5.
PLoS One ; 13(2): e0192062, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29420661

RESUMO

Cauliflower (Brassica oleracea var. botrytis) is an important vegetable crop for human nutrition. We characterized 192 cauliflower accessions from the USDA and IPK genebanks with genotyping by sequencing (GBS). They originated from 26 different countries and represent about 44% of all cauliflower accessions in both genebanks. The analysis of genetic diversity revealed that accessions formed two major groups that represented the two genebanks and were not related to the country of origin. This differentiation was robust with respect to the analysis methods that included principal component analysis, ADMIXTURE and neighbor-joining trees. Genetic diversity was higher in the USDA collection and significant phenotypic differences between the two genebanks were found in three out of six traits investigated. GBS data have a high proportion of missing data, but we observed that the exclusion of single nucleotide polymorphisms (SNPs) with missing data or the imputation of missing SNP alleles produced very similar results. The results indicate that the composition and type of accessions have a strong effect on the structure of genetic diversity of ex situ collections, although regeneration procedures and local adaptation to regeneration conditions may also contribute to a divergence. Fst-based outlier tests of genetic differentiation identified only a small proportion (<1%) of SNPs that are highly differentiated between the two genebanks, which indicates that selection during seed regeneration is not a major cause of differentiation between genebanks. Seed regeneration procedures of both genebanks do not result in different levels of genetic drift and loss of genetic variation. We therefore conclude that the composition and type of accessions mainly influence the level of genetic diversity and explain the strong genetic differentiation between the two ex situ collections. In summary, GBS is a useful method for characterizing genetic diversity in cauliflower genebank material and our results suggest that it may be useful to incorporate routine genotyping into accession management and seed regeneration to monitor the diversity present in ex situ collections and to reduce the loss of genetic diversity during seed regeneration.


Assuntos
Brassica/genética , Variação Genética , Genes de Plantas , Fenótipo , Polimorfismo de Nucleotídeo Único
6.
G3 (Bethesda) ; 8(2): 707-718, 2018 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-29255118

RESUMO

Genetic resources are an important source of genetic variation for plant breeding. Genome-wide association studies (GWAS) and genomic prediction greatly facilitate the analysis and utilization of useful genetic diversity for improving complex phenotypic traits in crop plants. We explored the potential of GWAS and genomic prediction for improving curd-related traits in cauliflower (Brassica oleracea var. botrytis) by combining 174 randomly selected cauliflower gene bank accessions from two different gene banks. The collection was genotyped with genotyping-by-sequencing (GBS) and phenotyped for six curd-related traits at two locations and three growing seasons. A GWAS analysis based on 120,693 single-nucleotide polymorphisms identified a total of 24 significant associations for curd-related traits. The potential for genomic prediction was assessed with a genomic best linear unbiased prediction model and BayesB. Prediction abilities ranged from 0.10 to 0.66 for different traits and did not differ between prediction methods. Imputation of missing genotypes only slightly improved prediction ability. Our results demonstrate that GWAS and genomic prediction in combination with GBS and phenotyping of highly heritable traits can be used to identify useful quantitative trait loci and genotypes among genetically diverse gene bank material for subsequent utilization as genetic resources in cauliflower breeding.


Assuntos
Brassica/genética , Mapeamento Cromossômico/métodos , Genoma de Planta/genética , Locos de Características Quantitativas/genética , Algoritmos , Brassica/classificação , Brassica/crescimento & desenvolvimento , Variação Genética , Estudo de Associação Genômica Ampla , Genômica/métodos , Genótipo , Modelos Genéticos , Fenótipo , Melhoramento Vegetal/métodos , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA/métodos
7.
New Phytol ; 215(3): 1221-1234, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28590553

RESUMO

Transgenerational environmental effects can trigger strong phenotypic variation. However, it is unclear how cues from different preceding generations interact. Also, little is known about the genetic variation for these life history traits. Here, we present the effects of grandparental and parental mild heat, and their combination, on four traits of the third-generation phenotype of 14 Arabidopsis thaliana genotypes. We tested for correlations of these effects with climate and constructed a conceptual model to identify the environmental conditions that favour the parental effect on flowering time. We observed strong evidence for genotype-specific transgenerational effects. On average, A. thaliana accustomed to mild heat produced more seeds after two generations. Parental effects overruled grandparental effects in all traits except reproductive biomass. Flowering was generally accelerated by all transgenerational effects. Notably, the parental effect triggered earliest flowering in genotypes adapted to dry summers. Accordingly, this parental effect was favoured in the model when early summer heat terminated the growing season and environments were correlated across generations. Our results suggest that A. thaliana can partly accustom to mild heat over two generations and genotype-specific parental effects show non-random evolutionary divergence across populations that may support climate change adaptation in the Mediterranean.


Assuntos
Arabidopsis/genética , Clima , Temperatura Alta , Padrões de Herança/genética , Análise de Variância , Flores/fisiologia , Aptidão Genética , Genótipo , Geografia , Modelos Lineares , Fenótipo , Fatores de Tempo
8.
Theor Appl Genet ; 130(8): 1669-1683, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28534096

RESUMO

KEY MESSAGE: Genomic prediction was evaluated in German winter barley breeding lines. In this material, prediction ability is strongly influenced by population structure and main determinant of prediction ability is the close genetic relatedness of the breeding material. To ensure breeding progress under changing environmental conditions the implementation and evaluation of new breeding methods is of crucial importance. Modern breeding approaches like genomic selection may significantly accelerate breeding progress. We assessed the potential of genomic prediction in a training population of 750 genotypes, consisting of multiple six-rowed winter barley (Hordeum vulgare L.) elite material families and old cultivars, which reflect the breeding history of barley in Germany. Crosses of parents selected from the training set were used to create a set of double-haploid families consisting of 750 genotypes. Those were used to confirm prediction ability estimates based on a cross-validation with the training set material using 11 different genomic prediction models. Population structure was inferred with dimensionality reduction methods like discriminant analysis of principle components and the influence of population structure on prediction ability was investigated. In addition to the size of the training set, marker density is of crucial importance for genomic prediction. We used genome-wide linkage disequilibrium and persistence of linkage phase as indicators to estimate that 11,203 evenly spaced markers are required to capture all QTL effects. Although a 9k SNP array does not contain a sufficient number of polymorphic markers for long-term genomic selection, we obtained fairly high prediction accuracies ranging from 0.31 to 0.71 for the traits earing, hectoliter weight, spikes per square meter, thousand kernel weight and yield and show that they result from the close genetic relatedness of the material. Our work contributes to designing long-term genetic prediction programs for barley breeding.


Assuntos
Genoma de Planta , Hordeum/crescimento & desenvolvimento , Hordeum/genética , Melhoramento Vegetal , Cruzamentos Genéticos , Genômica , Genótipo , Desequilíbrio de Ligação , Modelos Genéticos , Fenótipo
9.
Mol Phylogenet Evol ; 109: 80-92, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28057554

RESUMO

The genus Amaranthus consists of 50-70 species and harbors several cultivated and weedy species of great economic importance. A small number of suitable traits, phenotypic plasticity, gene flow and hybridization made it difficult to establish the taxonomy and phylogeny of the whole genus despite various studies using molecular markers. We inferred the phylogeny of the Amaranthus genus using genotyping by sequencing (GBS) of 94 genebank accessions representing 35 Amaranthus species and measured their genome sizes. SNPs were called by de novo and reference-based methods, for which we used the distant sugarbeet Beta vulgaris and the closely related Amaranthus hypochondriacus as references. SNP counts and proportions of missing data differed between methods, but the resulting phylogenetic trees were highly similar. A distance-based neighbor joining tree of individual accessions and a species tree calculated with the multispecies coalescent supported a previous taxonomic classification into three subgenera although the subgenus A. Acnida consists of two highly differentiated clades. The analysis of the Hybridus complex within the A. Amaranthus subgenus revealed insights on the history of cultivated grain amaranths. The complex includes the three cultivated grain amaranths and their wild relatives and was well separated from other species in the subgenus. Wild and cultivated amaranth accessions did not differentiate according to the species assignment but clustered by their geographic origin from South and Central America. Different geographically separated populations of Amaranthus hybridus appear to be the common ancestors of the three cultivated grain species and A. quitensis might be additionally be involved in the evolution of South American grain amaranth (A. caudatus). We also measured genome sizes of the species and observed little variation with the exception of two lineages that showed evidence for a recent polyploidization. With the exception of two lineages, genome sizes are quite similar and indicate that polyploidization did not play a major role in the history of the genus.


Assuntos
Amaranthus/genética , Genoma de Planta , Amaranthus/classificação , Evolução Molecular , Tamanho do Genoma , Genótipo , Hibridização Genética , Tipagem de Sequências Multilocus , Filogenia , Polimorfismo de Nucleotídeo Único
10.
Mol Ecol ; 26(3): 871-886, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28019043

RESUMO

The domestication syndrome comprises phenotypic changes that differentiate crops from their wild ancestors. We compared the genomic variation and phenotypic differentiation of the two putative domestication traits seed size and seed colour of the grain amaranth Amaranthus caudatus, which is an ancient crop of South America, and its two close wild relatives and putative ancestors A. hybridus and A. quitensis. Genotyping 119 accessions of the three species from the Andean region using genotyping by sequencing (GBS) resulted in 9485 SNPs that revealed a strong genetic differentiation of cultivated A. caudatus from its two relatives. A. quitensis and A. hybridus accessions did not cluster by their species assignment but formed mixed groups according to their geographic origin in Ecuador and Peru, respectively. A. caudatus had a higher genetic diversity than its close relatives and shared a high proportion of polymorphisms with their wild relatives consistent with the absence of a strong bottleneck or a high level of recent gene flow. Genome sizes and seed sizes were not significantly different between A. caudatus and its relatives, although a genetically distinct group of A. caudatus from Bolivia had significantly larger seeds. We conclude that despite a long history of human cultivation and selection for white grain colour, A. caudatus shows a weak genomic and phenotypic domestication syndrome and proposes that it is an incompletely domesticated crop species either because of weak selection or high levels of gene flow from its sympatric close undomesticated relatives that counteracted the fixation of key domestication traits.


Assuntos
Amaranthus/genética , Domesticação , Bolívia , Equador , Fluxo Gênico , Genótipo , Humanos , Peru , Fenótipo
11.
Front Plant Sci ; 7: 816, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27375666

RESUMO

Grain amaranths (Amaranthus spp.) have been cultivated for thousands of years in Central and South America. Their grains are of high nutritional value, but the low yield needs to be increased by selection of superior genotypes from genetically diverse breeding populations. Amaranths are adapted to harsh conditions and can be cultivated on marginal lands although little is known about their physiology. The development of controlled growing conditions and efficient crossing methods is important for research on and improvement of this ancient crop. Grain amaranth was domesticated in the Americas and is highly self-fertilizing with a large inflorescence consisting of thousands of very small flowers. We evaluated three different crossing methods (open pollination, hot water emasculation and hand emasculation) for their efficiency in amaranth and validated them with genetic markers. We identified cultivation conditions that allow an easy control of flowering time by day length manipulation and achieved flowering times of 4 weeks and generation times of 2 months. All three different crossing methods successfully produced hybrid F1 offspring, but with different success rates. Open pollination had the lowest (10%) and hand emasculation the highest success rate (74%). Hot water emasculation showed an intermediate success rate (26%) with a maximum of 94% success. It is simple to perform and suitable for a more large-scale production of hybrids. We further evaluated 11 single nucleotide polymorphism (SNP) markers and found that they were sufficient to validate all crosses of the genotypes used in this study for intra- and interspecific hybridizations. Despite its very small flowers, crosses in amaranth can be carried out efficiently and evaluated with inexpensive SNP markers. Suitable growth conditions strongly reduce the generation time and allow the control of plant height, flowering time, and seed production. In combination, this enables the rapid production of segregating populations which makes amaranth an attractive model for basic plant research but also facilitates further the improvement of this ancient crop by plant breeding.

12.
Mol Ecol ; 25(15): 3574-92, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27220345

RESUMO

Altitudinal gradients in mountain regions are short-range clines of different environmental parameters such as temperature or radiation. We investigated genomic and phenotypic signatures of adaptation to such gradients in five Arabidopsis thaliana populations from the North Italian Alps that originated from 580 to 2350 m altitude by resequencing pools of 19-29 individuals from each population. The sample includes two pairs of low- and high-altitude populations from two different valleys. High-altitude populations showed a lower nucleotide diversity and negative Tajima's D values and were more closely related to each other than to low-altitude populations from the same valley. Despite their close geographic proximity, demographic analysis revealed that low- and high-altitude populations split between 260 000 and 15 000 years before present. Single nucleotide polymorphisms whose allele frequencies were highly differentiated between low- and high-altitude populations identified genomic regions of up to 50 kb length where patterns of genetic diversity are consistent with signatures of local selective sweeps. These regions harbour multiple genes involved in stress response. Variation among populations in two putative adaptive phenotypic traits, frost tolerance and response to light/UV stress was not correlated with altitude. Taken together, the spatial distribution of genetic diversity reflects a potentially adaptive differentiation between low- and high-altitude populations, whereas the phenotypic differentiation in the two traits investigated does not. It may resemble an interaction between adaptation to the local microhabitat and demographic history influenced by historical glaciation cycles, recent seed dispersal and genetic drift in local populations.


Assuntos
Altitude , Arabidopsis/genética , Variação Genética , Genética Populacional , Frequência do Gene , Deriva Genética , Genoma de Planta , Genômica , Itália , Fenótipo , Polimorfismo de Nucleotídeo Único
13.
Mol Biol Evol ; 33(7): 1669-78, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26956888

RESUMO

Reproductive traits in plants tend to evolve rapidly due to various causes that include plant-pollinator coevolution and pollen competition, but the genomic basis of reproductive trait evolution is still largely unknown. To characterize evolutionary patterns of genome wide gene expression in reproductive tissues in the gametophyte and to compare them to developmental stages of the sporophyte, we analyzed evolutionary conservation and genetic diversity of protein-coding genes using microarray-based transcriptome data from three plant species, Arabidopsis thaliana, rice (Oryza sativa), and soybean (Glycine max). In all three species a significant shift in gene expression occurs during gametogenesis in which genes of younger evolutionary age and higher genetic diversity contribute significantly more to the transcriptome than in other stages. We refer to this phenomenon as "evolutionary bulge" during plant reproductive development because it differentiates the gametophyte from the sporophyte. We show that multiple, not mutually exclusive, causes may explain the bulge pattern, most prominently reduced tissue complexity of the gametophyte, a varying extent of selection on reproductive traits during gametogenesis as well as differences between male and female tissues. This highlights the importance of plant reproduction for understanding evolutionary forces determining the relationship of genomic and phenotypic variation in plants.


Assuntos
Perfilação da Expressão Gênica/métodos , Genoma de Planta , Plantas/genética , Arabidopsis/genética , Evolução Biológica , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Células Germinativas Vegetais , Oryza/genética , Desenvolvimento Vegetal/genética , Proteínas de Plantas/genética , Glycine max/genética , Transcriptoma
14.
BMC Plant Biol ; 15: 134, 2015 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-26055625

RESUMO

BACKGROUND: The evolutionary basis of reproductive success in different environments is of major interest in the study of plant adaptation. Since the reproductive stage is particularly sensitive to drought, genes affecting reproductive success during this stage are key players in the evolution of adaptive mechanisms. We used an ecological genomics approach to investigate the reproductive response of drought-tolerant and sensitive wild barley accessions originating from different habitats in the Levant. RESULTS: We sequenced mRNA extracted from spikelets at the flowering stage in drought-treated and control plants. The barley genome was used for a reference-guided assembly and differential expression analysis. Our approach enabled to detect biological processes affecting grain production under drought stress. We detected novel candidate genes and differentially expressed alleles associated with drought tolerance. Drought associated genes were shown to be more conserved than non-associated genes, and drought-tolerance genes were found to evolve more rapidly than other drought associated genes. CONCLUSIONS: We show that reproductive success under drought stress is not a habitat-specific trait but a shared physiological adaptation that appeared to evolve recently in the evolutionary history of wild barley. Exploring the genomic basis of reproductive success under stress in crop wild progenitors is expected to have considerable ecological and economical applications.


Assuntos
Secas , Ecótipo , Genes de Plantas , Hordeum/genética , Hordeum/fisiologia , Análise de Sequência de RNA/métodos , Estresse Fisiológico/genética , Adaptação Fisiológica/genética , Alelos , Evolução Biológica , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Anotação de Sequência Molecular , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reprodução/genética
15.
BMC Genomics ; 15: 995, 2014 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-25408241

RESUMO

BACKGROUND: Wild barley is adapted to highly diverse environments throughout its geographical distribution range. Transcriptome sequencing of differentially adapted wild barley ecotypes from contrasting environments contributes to the identification of genes and genetic variation involved in abiotic stress tolerance and adaptation. RESULTS: Two differentially adapted wild barley ecotypes from desert (B1K2) and Mediterranean (B1K30) environments were analyzed for drought stress response under controlled conditions. The desert ecotype lost more water under both irrigation and drought, but exhibited higher relative water content (RWC) and better water use efficiency (WUE) than the coastal ecotype. We sequenced normalized cDNA libraries from drought-stressed leaves of both ecotypes with the 454 platform to identify drought-related transcripts. Over half million reads per ecotype were de novo assembled into 20,439 putative unique transcripts (PUTs) for B1K2, 21,494 for B1K30 and 28,720 for the joint assembly. Over 50% of PUTs of each ecotype were not shared with the other ecotype. Furthermore, 16% (3,245) of B1K2 and 17% (3,674) of B1K30 transcripts did not show orthologous sequence hits in the other wild barley ecotype and cultivated barley, and are candidates of ecotype-specific transcripts. Over 800 unique transcripts from each ecotype homologous to over 30 different stress-related genes were identified. We extracted 1,017 high quality SNPs that differentiated the two ecotypes. The genetic distance between the desert ecotype and cultivated barley was 1.9-fold higher than between the Mediterranean ecotype and cultivated barley. Moreover, the desert ecotype harbored a larger proportion of non-synonymous SNPs than the Mediterranean ecotype suggesting different demographic histories of these ecotypes. CONCLUSIONS: The results indicate a strong physiological and genomic differentiation between the desert and Mediterranean wild barley ecotypes and a closer relationship of the Mediterranean to cultivated barley. A significant number of novel transcripts specific to wild barley were identified. The higher SNP density and larger proportion of SNPs with functional effects in the desert ecotype suggest different demographic histories and effects of natural selection in Mediterranean and desert wild barley. The data are a valuable genomic resource for an improved genome annotation, transcriptome studies of drought adaptation and a source of new genetic markers for future barley improvement.


Assuntos
Adaptação Fisiológica/genética , Secas , Ecótipo , Hordeum/genética , Análise de Sequência de RNA , Estresse Fisiológico/genética , Transcriptoma/genética , Sequência de Bases , Evolução Biológica , Sequência Conservada , Produtos Agrícolas/genética , Produtos Agrícolas/fisiologia , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Genes de Plantas , Anotação de Sequência Molecular , Folhas de Planta/genética , Transpiração Vegetal/genética , Polimorfismo de Nucleotídeo Único/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Recombinação Genética/genética , Padrões de Referência , Solo/química , Especificidade da Espécie , Fatores de Transcrição/metabolismo , Água/metabolismo
16.
Mol Biol Evol ; 31(3): 574-83, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24273323

RESUMO

Sex-biased genes are genes with a preferential or specific expression in one sex and tend to show an accelerated rate of evolution in animals. Various hypotheses--which are not mutually exclusive--have been put forth to explain observed patterns of rapid evolution. One possible explanation is positive selection, but this has been shown only in few animal species and mostly for male-specific genes. Here, we present a large-scale study that investigates evolutionary patterns of sex-biased genes in the predominantly self-fertilizing plant Arabidopsis thaliana. Unlike most animal species, A. thaliana does not possess sex chromosomes, its flowers develop both male and female sexual organs, and it is characterized by low outcrossing rates. Using cell-specific gene expression data, we identified genes whose expression is enriched in comparison with all other tissues in the male and female gametes (sperm, egg, and central cell), as well as in synergids, pollen, and pollen tubes, which also play an important role in reproduction. Genes specifically expressed in gametes and synergids show higher rates of protein evolution compared with the genome-wide average and no evidence for positive selection. In contrast, pollen- and pollen tube-specific genes not only have lower rates of protein evolution but also exhibit a higher proportion of adaptive amino acid substitutions. We show that this is the result of increased levels of purifying and positive selection among genes with pollen- and pollen tube-specific expression. The increased proportion of adaptive substitutions cannot be explained by the fact that pollen- and pollen tube-expressed genes are enriched in segmental duplications, are on average older, or have a larger effective population size. Our observations are consistent with prezygotic sexual selection as a result of interactions during pollination and pollen tube growth such as pollen tube competition.


Assuntos
Arabidopsis/genética , Evolução Molecular , Genes de Plantas/genética , Seleção Genética , Duplicação Gênica/genética , Regulação da Expressão Gênica de Plantas , Tubo Polínico/genética , Reprodução/genética
17.
Mol Biol Evol ; 30(3): 561-8, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23115321

RESUMO

The transcriptome and proteome of Arabidopsis thaliana are reduced in nitrogen content when compared with other taxa, which may result from ecological nitrogen limitation. We hypothesized that if the A. thaliana transcriptome is selected for a low nitrogen content, nitrogen-reducing derived alleles of single nucleotide polymorphisms (SNPs) should segregate at higher frequencies than nitrogen-increasing alleles. This pattern should be stronger in populations with a larger effective population size (N(e)) if natural selection is more efficient in large than in small populations. We analyzed variation in the nitrogen content in the transcriptome of 80 natural accessions of A. thaliana. In contrast to our expectations, derived alleles increase the nitrogen content in all accessions, and there is a positive correlation between nitrogen difference and derived allele frequency, which is strongest with nonsynonymous SNPs (nsSNPs). Also, there is a positive correlation between nitrogen difference and N(e) that was mainly caused by nsSNPs. These observations led us to reject the hypothesis that the transcriptome of A. thaliana is currently under selection to reduce nitrogen content. Instead, we show that a change in nitrogen content is a side effect of interacting evolutionary factors that influence base composition and include mutational bias, purifying selection of functionally deleterious alleles, and GC-biased gene conversion. We provide strong evidence that GC-biased gene conversion may play an important role for base composition in the highly selfing plant A. thaliana.


Assuntos
Arabidopsis/genética , Conversão Gênica , Nitrogênio/metabolismo , Transcriptoma , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Composição de Bases , Perfilação da Expressão Gênica , Frequência do Gene , Modelos Genéticos , Taxa de Mutação , Nucleotídeos/metabolismo , Polimorfismo de Nucleotídeo Único , Recombinação Genética , Seleção Genética , Especificidade da Espécie
18.
BMC Genomics ; 13: 673, 2012 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-23190494

RESUMO

BACKGROUND: Douglas-fir (Pseudotsuga menziesii) extends over a wide range of contrasting environmental conditions, reflecting substantial local adaptation. For this reason, it is an interesting model species to study plant adaptation and the effects of global climate change such as increased temperatures and significant periods of drought on individual trees and the forest landscape in general. However, genomic data and tools for studying genetic variation in natural populations to understand the genetic and physiological mechanisms of adaptation are currently missing for Douglas-fir. This study represents a first step towards characterizing the Douglas-fir transcriptome based on 454 sequencing of twelve cDNA libraries. The libraries were constructed from needle and wood tissue of coastal and interior provenances subjected to drought stress experiments. RESULTS: The 454 sequencing of twelve normalized cDNA libraries resulted in 3.6 million reads from which a set of 170,859 putative unique transcripts (PUTs) was assembled. Functional annotation by BLAST searches and Gene Ontology mapping showed that the composition of functional classes is very similar to other plant transcriptomes and demonstrated that a large fraction of the Douglas-fir transcriptome is tagged by the PUTs. Based on evolutionary conservation, we identified about 1,000 candidate genes related to drought stress. A total number of 187,653 single nucleotide polymorphisms (SNPs) were detected by three SNP detection tools. However, only 27,688 SNPs were identified by all three methods, indicating that SNP detection depends on the particular method used. The two alleles of about 60% of the 27,688 SNPs are segregating simultaneously in both coastal and interior provenances, which indicates a high proportion of ancestral shared polymorphisms or a high level of gene flow between these two ecologically and phenotypically different varieties. CONCLUSIONS: We established a catalogue of PUTs and large SNP database for Douglas-fir. Both will serve as a useful resource for the further characterization of the genome and transcriptome of Douglas-fir and for the analysis of genetic variation using genotyping or resequencing methods.


Assuntos
Adaptação Fisiológica/genética , Bases de Dados de Ácidos Nucleicos , Genoma de Planta , Pseudotsuga/genética , Plântula/genética , Estresse Fisiológico/genética , Transcriptoma , Aclimatação/genética , Sequência de Bases , Clima , Secas , Biblioteca Gênica , Variação Genética , Genótipo , Geografia , Polimorfismo de Nucleotídeo Único , Pseudotsuga/fisiologia , Plântula/fisiologia , Análise de Sequência de DNA
19.
Mol Ecol ; 21(5): 1115-29, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22256891

RESUMO

The domestication of plants frequently results in a high level of genetic differentiation between domesticated plants and their wild progenitors. This process is counteracted by gene flow between wild and domesticated plants because they are usually able to inter-mate and to exchange genes. We investigated the extent of gene flow between wild barley Hordeum spontaneum and cultivated barley Hordeum vulgare, and its effect on population structure in wild barley by analysing a collection of 896 wild barley accessions (Barley1K) from Israel and all available Israeli H. vulgare accessions from the Israeli gene bank. We compared the performance of simple sequence repeats (SSR) and single nucleotide polymorphisms (SNP) marker data genotyped over a core collection in estimating population parameters. Estimates of gene flow rates with SSR markers indicated a high level of introgression from cultivated barley into wild barley. After removing accessions from the wild barley sample that were recently admixed with cultivated barley, the inference of population structure improved significantly. Both SSR and SNP markers showed that the genetic population structure of wild barley in Israel corresponds to the three major ecogeographic regions: the coast, the Mediterranean north and the deserts in the Jordan valley and the South. Gene flow rates were estimated to be higher from north to south than in the opposite direction. As has been observed in other crop species, there is a significant exchange of alleles between the wild species and domesticated varieties that needs to be accounted for in the population genetic analysis of domestication.


Assuntos
Evolução Molecular , Fluxo Gênico , Genética Populacional , Hordeum/genética , Alelos , Teorema de Bayes , DNA de Plantas/genética , Marcadores Genéticos , Técnicas de Genotipagem , Israel , Repetições de Microssatélites , Polimorfismo de Nucleotídeo Único
20.
J Mol Evol ; 73(3-4): 153-65, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21965041

RESUMO

Gene duplications are one of the most important mechanisms for the origin of evolutionary novelties. Even though various models of the fate of duplicated genes have been established, current knowledge about the role of divergent selection after gene duplication is rather limited. In this study, we analyzed sequence divergence in response to neo- and subfunctionalization of segmentally duplicated genes in the genome of Arabidopsis thaliana. We compared the genomes of A. thaliana and the poplar Populus trichocarpa to identify orthologous pairs of genes and their corresponding inparalogs. Maximum-likelihood analyses of the nonsynonymous and synonymous substitution rate ratio [Formula: see text] of pairs of A. thaliana inparalogs were used to detect differences in the evolutionary rates of protein coding sequences. We analyzed 1,924 A. thaliana paralogous pairs and our results indicate that around 6.9% show divergent ω values between the lineages for a fraction of sites. We observe an enrichment of regulatory sequences, a reduced level of co-expression and an increased number of substitutions that can be attributed to positive selection based on an McDonald-Kreitman type of analysis. Taken together, these results show that selection after duplication contributes substantially to gene novelties and hence functional divergence in plants.


Assuntos
Arabidopsis/genética , Evolução Molecular , Duplicação Gênica , Seleção Genética , Sequência de Aminoácidos , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Simulação por Computador , Sequência Conservada , Expressão Gênica , Variação Genética , Funções Verossimilhança , Modelos Genéticos , Família Multigênica , Populus/genética , Duplicações Segmentares Genômicas , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...