Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Math Phys Eng Sci ; 477(2245): 20200472, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33642926

RESUMO

Gradient-based optimization is used to reliably and optimally induce ignition in three examples of laminar non-premixed mixture configurations. Using time-integrated heat release as a cost functional, the non-convex optimization problem identified optimal energy source locations that coincide with the stoichiometric local mixture fraction surface for short optimization horizons, while for longer horizons, the hydrodynamics plays an increasingly important role and a balance between flow and chemistry features determines non-trivial optimal ignition locations. Rather than identifying a single optimal ignition location, the results of this study show that there may be several equally good ignition locations in a given flow configuration.

2.
Phys Rev E ; 93(5): 053110, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27300981

RESUMO

River bedforms arise as a result of morphological instabilities of the stream-sediment interface. Dunes and antidunes constitute the most typical patterns, and their occurrence and dynamics are relevant for a number of engineering and environmental applications. Although flow variability is a typical feature of all rivers, the bedform-triggering morphological instabilities have generally been studied under the assumption of a constant flow rate. In order to partially address this shortcoming, we here discuss the influence of (periodic) flow unsteadiness on bedform inception. To this end, our recent one-dimensional validated model coupling Dressler's equations with a refined mechanistic sediment transport formulation is adopted, and both the asymptotic and transient dynamics are investigated by modal and nonmodal analyses.

3.
Artigo em Inglês | MEDLINE | ID: mdl-26382508

RESUMO

In this article, we show that the projection-free, snapshot-based, balanced truncation method can be applied directly to unstable systems. We prove that even for unstable systems, the unmodified balanced proper orthogonal decomposition algorithm theoretically yields a converged transformation that balances the Gramians (including the unstable subspace). We then apply the method to a spatially developing unstable system and show that it results in reduced-order models of similar quality to the ones obtained with existing methods. Due to the unbounded growth of unstable modes, a practical restriction on the final impulse response simulation time appears, which can be adjusted depending on the desired order of the reduced-order model. Recommendations are given to further reduce the cost of the method if the system is large and to improve the performance of the method if it does not yield acceptable results in its unmodified form. Finally, the method is applied to the linearized flow around a cylinder at Re = 100 to show that it actually is able to accurately reproduce impulse responses for more realistic unstable large-scale systems in practice. The well-established approximate balanced truncation numerical framework therefore can be safely applied to unstable systems without any modifications. Additionally, balanced reduced-order models can readily be obtained even for large systems, where the computational cost of existing methods is prohibitive.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...