Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 160(7)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38364002

RESUMO

The rotational spectrum of the molecular ion HCNH+ is revisited using double-resonance spectroscopy in an ion trap apparatus, with six transitions measured between 74 and 445 GHz. Due to the cryogenic temperature of the trap, the hyperfine splittings caused by the 14N quadrupolar nucleus were resolved for transitions up to J = 4 ← 3, allowing for a refinement of the spectroscopic parameters previously reported, especially the quadrupole coupling constant eQq.

2.
Molecules ; 29(3)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38338409

RESUMO

Two fundamental halocarbon ions, CH2Cl+ and CH3ClH+, were studied in the gas phase using the FELion 22-pole ion trap apparatus and the Free Electron Laser for Infrared eXperiments (FELIX) at Radboud University, Nijmegen (the Netherlands). The vibrational bands of a total of four isotopologs, CH235,37Cl+ and CH335,37ClH+, were observed in selected wavenumber regions between 500 and 2900 cm-1 and then spectroscopically assigned based on the results of anharmonic force field calculations performed at the CCSD(T) level of theory. As the infrared photodissociation spectroscopy scheme employed probes singly Ne-tagged weakly bound complexes, complementary quantum-chemical calculations of selected species were also performed. The impact of tagging on the vibrational spectra of CH2Cl+ and CH3ClH+ is found to be virtually negligible for most bands; for CH3ClH+-Ne, the observations suggest a proton-bound structural arrangement. The experimental band positions as well as the best estimate rotational molecular parameters given in this work provide a solid basis for future spectroscopic studies at high spectral resolutions.

3.
Phys Chem Chem Phys ; 25(29): 19740-19749, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37439091

RESUMO

The ro-vibrational and pure rotational spectra of the linear ion HC3O+ have been investigated in a 4 K cryogenic ion trap instrument. For this, a novel action spectroscopic technique, called leak-out-spectroscopy (LOS, Schmid et al., J. Phys. Chem. A 2022, 126, 8111), has been utilized and characterized. In total, 45 ro-vibrational transitions within the fundamental band of the ν1 C-H stretching mode were measured with a band center at 3237.132 cm-1, as well as 34 lines from the combination band ν2 + ν4, and 41 lines tentatively identified as the combination band ν2 + ν5 + ν7, interleaved and resonant with ν1. Surprisingly, also two hot bands were detected despite the cryogenic operation temperature. Based on the novel action spectroscopy approach, a new double-resonance rotational measurement scheme was established, consisting of rotational excitation followed by vibrational excitation. Seven rotational transitions were observed between 89 and 180 GHz. Highly accurate spectroscopic parameters were extracted from a fit using all available data. In addition, a pulsed laser system has been employed to record a low resolution vibrational spectrum, in order to demonstrate the compatibility of such lasers with the LOS method.

4.
J Phys Chem A ; 126(43): 8111-8117, 2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36278898

RESUMO

A novel method of spectroscopy in ion traps termed leak-out spectroscopy (LOS) is presented. Here, mass-selected, cold ions are excited by an infrared laser. In a subsequent collision with a neutral buffer gas particle, their internal energy is then transferred to kinetic energy. As a result, these ions leak out from the ion trap and are detected. The LOS scheme is generally applicable, very sensitive, and close to background-free when operated at low temperature. The potential of this method is demonstrated and characterized here for the first time by recording the rotationally resolved spectrum of the C-H stretching vibration ν1 of linear C3H+. Besides performing high-resolution spectroscopy, this method opens up the way for analyzing the composition of trap content, for example, determining isomer ratios, by selectively expelling isomers or other isobaric ions from the trap. Likewise, LOS can be used to prepare clean samples of structural and nuclear spin isomers.

5.
J Mol Spectrosc ; 3772021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34262226

RESUMO

A cryogenic 22-pole ion trap apparatus is used in combination with a table-top pulsed IR source to probe weakly bound CH+-He and CH+-He4 complexes by predissociation spectroscopy at 4 K. The infrared photodissociation spectra of the C-H stretching vibrations are recorded in the range of 2720-2800 cm-1. The spectrum of CH+-He exhibits perpendicular transitions of a near prolate top with a band origin at 2745.9 cm-1, and thus confirms it to have a T-shaped structure. For CH+-He4, the C-H stretch along the symmetry axis of this oblate top results in parallel transitions.

6.
J Chem Phys ; 154(12): 124310, 2021 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-33810655

RESUMO

Investigations into bimolecular reaction kinetics probe the details of the underlying potential energy surface (PES), which can help to validate high-level quantum chemical calculations. We utilize a combined linear Paul ion trap with a time-of-flight mass spectrometer to study isotopologue reactions between acetylene cations (C2H2 +) and two isomers of C3H4: propyne (HC3H3) and allene (H2C3H2). In a previous study [Schmid et al., Phys. Chem. Chem. Phys. 22, 20303 (2020)],1 we showed that the two isomers of C3H4 have fundamentally different reaction mechanisms. Here, we further explore the calculated PES by isotope substitution. While isotopic substitution of reactants is a standard experimental tool in the investigation of molecular reaction kinetics, the controlled environment of co-trapped, laser-cooled Ca+ ions allows the different isotopic reaction pathways to be followed in greater detail. We report branching ratios for all of the primary products of the different isotopic species. The results validate the previously proposed mechanism: propyne forms a bound reaction complex with C2H2 +, while allene and C2H2 + perform long-range charge exchange only.

7.
Phys Rev Lett ; 124(23): 233401, 2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32603166

RESUMO

Experiments within a cryogenic 22-pole ion trap have revealed an interesting reaction dynamic phenomenon, where rovibrational excitation of an ionic molecule slows down a reaction with a neutral partner. This is demonstrated for the low-temperature hydrogen abstraction reaction c-C_{3}H_{2}^{+}+H_{2}, where excitation of the ion into the ν_{7} antisymmetric C-H stretching mode decreased the reaction rate coefficient toward the products c-C_{3}H_{3}^{+}+H. Supported by high-level quantum-chemical calculations, this observation is explained by the reaction proceeding through a c-C_{3}H_{2}^{+}-H_{2} collision complex in the entrance channel, in which the hydrogen molecule is loosely bound to the hydrogen atom of the c-C_{3}H_{2}^{+} ion. This discovery enables high-resolution vibrational action spectroscopy for c-C_{3}H_{2}^{+} and other molecular ions with similar reaction pathways. Moreover, a detailed kinetic model relating the extent of the observed product depletion signal to the rate coefficients of inelastic collisions reveals that rotational relaxation of the vibrationally excited ions is significantly faster than the rovibrational relaxation, allowing for a large fraction of the ions to be vibrationally excited. This result provides fundamental insight into the mechanism for an important class of chemical reactions, and is capable of probing the inelastic collisional dynamics of molecular ions.

8.
Chemistry ; 26(10): 2204-2210, 2020 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-31711269

RESUMO

Understanding the origin and mechanisms of luminescence is a crucial point when it comes to the development of new phosphors with targeted luminescence properties. Herein, a new phosphor belonging to the substance class of alkali metal lithosilicates with the generalized sum formula Cs4-x-y-z Rbx Nay Liz [Li3 SiO4 ]4 :Eu2+ is reported. Single crystals of the cyan-emitting UCr4 C4 -type phosphor show a peculiar double-band luminescence with one ultranarrow emission band at 473 nm and a narrow emission band at 531 nm under excitation with UV light (λexc =408 nm). Regarding occupation of the channels by the light metal ions, investigations of single-crystal XRD data led to the assumption that domain formation with distinct lithium- and sodium-filled channels occurs. Depending on which of these channels hosts the activator ion Eu2+ , a green or blue emission results. The herein-presented results shed new light on the luminescence process in the well-studied UCr4 C4 -type alkali metal lithosilicate phosphors.

9.
Nat Commun ; 10(1): 1824, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-31015399

RESUMO

Innovative materials for phosphor converted white light-emitting diodes are in high demand owing to the huge potential of the light-emitting diode technology to reduce energy consumption worldwide. As the primary blue diode is already highly optimized, the conversion phosphors are of crucial importance for any further improvements. We report on the discovery of the high performance red phosphor Sr[Li2Al2O2N2]:Eu2+ meeting all requirements for a phosphor's optical properties. It combines the optimal spectral position for a red phosphor, as defined in the 2016 Research & Development-plan of the United States government, with an exceptionally small spectral full width at half maximum and excellent thermal stability. A white mid-power phosphor-converted light-emitting diode prototype utilising Sr[Li2Al2O2N2]:Eu2+ shows an increase of 16% in luminous efficacy compared to currently available commercial high colour-rendering phosphor-converted light-emitting diodes, while retaining excellent high colour rendition. This phosphor enables a big leap in energy efficiency of white emitting phosphor-converted light-emitting-diodes.

10.
Chem Asian J ; 11(6): 844-51, 2016 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-26195246

RESUMO

A simple and straightforward synthesis of 5,5'-diamino-4,4'-dinitramino-3,3'-bi-1,2,4-triazole by the selective nitration of 4,4',5,5'-tetraamino-3,3'-bi-1,2,4-triazole is presented. The interaction of the amino and nitramino groups improves the energetic properties of this functionalized bitriazole. For a deeper investigation of these properties, various nitrogen-rich derivatives were synthesized. The new compounds were investigated and characterized by spectroscopy ((1)H and (13)C NMR, IR, Raman), elemental analysis, mass spectrometry, differential thermal analysis (DTA), X-ray analysis, and impact and friction sensitivities (IS, FS). X-ray analyses were performed and deliver insight into structural characteristics with which the stability of the compounds can be explained. The standard enthalpies of formation were calculated for all compounds at the CBS-4M level of theory, revealing highly positive heats of formation. The energetic performance of the new molecules was predicted with the EXPLO5 V6.02 computer. A small-scale shock reactivity test (SSRT) and a toxicity test gave a first impression of the performance and toxicity of selective compounds.

11.
Chemistry ; 21(25): 9219-28, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-26012719

RESUMO

A novel strategy for the design of energetic materials that uses fused amino-substituted triazoles as energetic building blocks is presented. The 3,6,7-triamino-7H-[1,2,4]triazolo[4,3-b][1,2,4]triazolium (TATOT) motif can be incorporated into many ionic, nitrogen-rich materials to form salts with advantages such as remarkably high stability towards physical or mechanical stimuli, excellent calculated detonation velocity, and toxicity low enough to qualify them as "green explosives". Neutral TATOT can be synthesized in a convenient and inexpensive two-step protocol in high yield. To demonstrate the superior properties of TATOT, 13 ionic derivatives were synthesized and their chemical- and physicochemical properties (e.g., sensitivities towards impact, friction and electrostatic discharge) were investigated extensively. Low toxicity was demonstrated for neutral TATOT and its nitrate salt. Both are insensitive towards impact and friction and the nitrate salt combines outstanding thermal stability (decomposition temperature=280 °C) with promising calculated energetic values.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...