Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Synchrotron Radiat ; 28(Pt 1): 146-157, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33399563

RESUMO

For high-resolution powder diffraction in material science, high photon energies are necessary, especially for in situ and in operando experiments. For this purpose, a multi-analyser detector (MAD) was developed for the high-energy beamline P02.1 at PETRA III of the Deutsches Elektronen-Synchrotron (DESY). In order to be able to adjust the detector for the high photon energies of 60 keV, an individually adjustable analyser-crystal setup was designed. The adjustment is performed via piezo stepper motors for each of the ten channels. The detector shows a low and flat background as well as a high signal-to-noise ratio. A range of standard materials were measured for characterizing the performance. Two exemplary experiments were performed to demonstrate the potential for sophisticated structural analysis with the MAD: (i) the structure of a complex material based on strontium niobate titanate and strontium niobate zirconate was determined and (ii) an in situ stroboscopy experiment with an applied electric field on a highly absorbing piezoceramic was performed. These experiments demonstrate the capabilities of the new MAD, which advances the frontiers of the structural characterization of materials.

3.
Acta Crystallogr A Found Adv ; 74(Pt 5): 408-424, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-30182930

RESUMO

Crystalline solids consisting of three-dimensional networks of interconnected rigid units are ubiquitous amongst functional materials. In many cases, application-critical properties are sensitive to rigid-unit rotations at low temperature, high pressure or specific stoichiometry. The shared atoms that connect rigid units impose severe constraints on any rotational degrees of freedom, which must then be cooperative throughout the entire network. Successful efforts to identify cooperative-rotational rigid-unit modes (RUMs) in crystals have employed split-atom harmonic potentials, exhaustive testing of the rotational symmetry modes allowed by group representation theory, and even simple geometric considerations. This article presents a purely algebraic approach to RUM identification wherein the conditions of connectedness are used to construct a linear system of equations in the rotational symmetry-mode amplitudes.

4.
Dalton Trans ; 46(22): 7253-7260, 2017 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-28537310

RESUMO

The structures across the Sr0.8Ti0.6-xZrxNb0.4O3, 0 ≤ x ≤ 0.6, defect perovskite series were investigated using complementary synchrotron X-ray and neutron powder diffraction data. The locations of second order compositional and temperature dependent phase transitions between the high symmetry cubic Pm3[combining macron]m phase and the lower symmetry tetragonal I4/mcm phase were determined. Deviation of the oxygen x coordinate from the high symmetry value and the B-O-B bond angle from 180° as well as the tetragonal strain squared were each found to be suitable order parameters to monitor the transitions. Tolerance factor calculations confirmed that these A-site deficient perovskites retain a higher symmetry to a lower value than their fully occupied counterparts. Therefore, adjusting vacancy concentrations can be employed as a general strategy to design compounds with specifically tailored phase transition temperatures.

5.
Artigo em Inglês | MEDLINE | ID: mdl-26027010

RESUMO

Possibilities for 'simple' octahedral tilting in the hexagonal and tetragonal tungsten bronzes (HTB and TTB) have been examined, making use of group theory as implemented in the computer program ISOTROPY. For HTB, there is one obvious tilting pattern, leading to a structure in space group P63/mmc. This differs from the space group P63/mcm frequently quoted from X-ray studies ­ these studies have in effect detected only displacements of the W cations from the centres of the WO6 octahedra. The correct space group, taking account of both W ion displacement and the octahedral tilting, is P6322 ­ structures in this space group and matching this description have been reported. A second acceptable tilting pattern has been found, leading to a structure in P6/mmm but on a larger '2 × 2 × 2' unit cell ­ however, no observations of this structure have been reported. For TTB, a search at the special points of the Brillouin zones revealed only one comparable tilting pattern, in a structure with space-group symmetry I4/m on a '2(1/2) × 2(1/2) by 2' unit cell. Given several literature reports of larger unit cells for TTB, we conducted a limited search along the lines of symmetry and found structures with acceptable tilt patterns in Bbmm on a '2(1/2)2 × 2(1/2) × 2' unit cell. A non-centrosymmetric version has been reported in niobates, in Bbm2 on the same unit cell.

6.
Inorg Chem ; 54(10): 4636-43, 2015 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-25939446

RESUMO

LiMnTiO4 was prepared through solid-state syntheses employing different heating and cooling regimes. Synchrotron X-ray and neutron powder diffraction data found quenched LiMnTiO4 to form as single phase disordered spinel (space group Fd3̅m), whereas slowly cooled LiMnTiO4 underwent partial phase transition from Fd3̅m to P4332. The phase behavior of quenched and slowly cooled LiMnTiO4 was confirmed through variable-temperature synchrotron X-ray and neutron powder diffraction measurements. The distribution of Li between tetrahedral and octahedral sites was determined from diffraction data. Analysis of the Mn/Ti distribution in addition required Mn and Ti K-edge X-ray absorption near-edge structure spectra. These revealed the presence of Mn(3+) in primarily octahedral and Ti(4+) in octahedral and tetrahedral environments, with very slight variations depending on the synthesis conditions. Magnetic measurements indicated the dominance of antiferromagnetic interactions in both the slowly cooled and quenched samples below 4.5 K.

7.
J Vis Exp ; (93): e52284, 2014 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-25406578

RESUMO

Li-ion batteries are widely used in portable electronic devices and are considered as promising candidates for higher-energy applications such as electric vehicles. However, many challenges, such as energy density and battery lifetimes, need to be overcome before this particular battery technology can be widely implemented in such applications. This research is challenging, and we outline a method to address these challenges using in situ NPD to probe the crystal structure of electrodes undergoing electrochemical cycling (charge/discharge) in a battery. NPD data help determine the underlying structural mechanism responsible for a range of electrode properties, and this information can direct the development of better electrodes and batteries. We briefly review six types of battery designs custom-made for NPD experiments and detail the method to construct the 'roll-over' cell that we have successfully used on the high-intensity NPD instrument, WOMBAT, at the Australian Nuclear Science and Technology Organisation (ANSTO). The design considerations and materials used for cell construction are discussed in conjunction with aspects of the actual in situ NPD experiment and initial directions are presented on how to analyze such complex in situ data.


Assuntos
Fontes de Energia Elétrica , Lítio/química , Difração de Nêutrons/instrumentação , Cátions Monovalentes/química , Eletrodos , Difração de Nêutrons/métodos , Difração de Pó
8.
Phys Chem Chem Phys ; 16(44): 24178-87, 2014 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-25072188

RESUMO

The development of electrodes for ambient temperature sodium-ion batteries requires the study of new materials and the understanding of how crystal structure influences properties. In this study, we investigate where sodium locates in two Prussian blue analogues, Fe[Fe(CN)6]1-x·yH2O and FeCo(CN)6. The evolution of the sodium site occupancies, lattice and volume is shown during charge-discharge using in situ synchrotron X-ray powder diffraction data. Sodium insertion is found to occur in these electrodes during cell construction and therefore Fe[Fe(CN)6]1-x·yH2O and FeCo(CN)6 can be used as positive electrodes. NazFeFe(CN)6 electrodes feature higher reversible capacities relative to NazFeCo(CN)6 electrodes which can be associated with a combination of structural factors, for example, a major sodium-containing phase, ∼Na0.5FeFe(CN)6 with sodium locating either at the x = y = z = 0.25 or x = y = 0.25 and z = 0.227(11) sites and an electrochemically inactive sodium-free Fe[Fe(CN)6]1-x·yH2O phase. This study demonstrates that key questions about electrode performance and attributes in sodium-ion batteries can be addressed using time-resolved in situ synchrotron X-ray diffraction studies.

9.
J Am Chem Soc ; 135(17): 6477-84, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23570580

RESUMO

The high-temperature cubic form of bismuth oxide, δ-Bi2O3, is the best intermediate-temperature oxide-ionic conductor known. The most elegant way of stabilizing δ-Bi2O3 to room temperature, while preserving a large part of its conductivity, is by doping with higher valent transition metals to create wide solid-solutions fields with exceedingly rare and complex (3 + 3)-dimensional incommensurately modulated "hypercubic" structures. These materials remain poorly understood because no such structure has ever been quantitatively solved and refined, due to both the complexity of the problem and a lack of adequate experimental data. We have addressed this by growing a large (centimeter scale) crystal using a novel refluxing floating-zone method, collecting high-quality single-crystal neutron diffraction data, and treating its structure together with X-ray diffraction data within the superspace symmetry formalism. The structure can be understood as an "inflated" pyrochlore, in which corner-connected NbO6 octahedral chains move smoothly apart to accommodate the solid solution. While some oxide vacancies are ordered into these chains, the rest are distributed throughout a continuous three-dimensional network of wide δ-Bi2O3-like channels, explaining the high oxide-ionic conductivity compared to commensurately modulated phases in the same pseudobinary system.

11.
Acta Crystallogr B ; 61(Pt 4): 361-6, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16041085

RESUMO

Members of the AMOB2O5 (A = K, Rb, Cs, Tl; M = Nb, Ta) family of compounds can be described as modulated structures with a single superspace group and very similar modulation functions. Single-crystal X-ray diffraction data (Mo Kalpha radiation) are used to solve and refine the structure of KNbOB2O5 in these terms for the first time. The average structure is solved and refined in the space group Pmn2(1). Subsequently, the atomic modulation functions are determined using JANA2000 and superspace-group symmetry Pmn2(1)(0,0.375,0)s. The commensurately modulated structure is finally refined as a superstructure in the space group Pbn2(1) using SHELXS97 converging to R(1) = 0.024.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...