Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 1(10): 1623-1628, 2010 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-20563223

RESUMO

Charged residues play an important role in defining key mechanistic features in many biomolecules. Determining the pK(a) values of large, membrane or fibrillar proteins can be challenging with traditional methods. In this study we show how solid-state NMR is used to monitor chemical shift changes during a pH titration for the small soluble ß1 immunoglobulin binding domain of protein G. The chemical shifts of all the amino acids with charged side-chains throughout the uniformly-(13)C,(15)N-labeled protein were monitored over several samples varying in pH; pK(a) values were determined from these shifts for E27, D36, and E42, and the bounds for the pK(a) of other acidic side-chain resonances were determined. Additionally, this study shows how the calculated pK(a) values give insights into the crystal packing of the protein.

2.
Proc Natl Acad Sci U S A ; 105(12): 4621-6, 2008 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-18344321

RESUMO

Magic-angle spinning (MAS) solid-state NMR (SSNMR) techniques have emerged in recent years for solving complete structures of uniformly labeled proteins lacking macroscopic order. Strategies used thus far have relied primarily on semiquantitative distance restraints, analogous to the nuclear Overhauser effect (NOE) routinely used in solution NMR. Here, we present a complementary approach for using relative orientations of molecular fragments, determined from dipolar line shapes. Whereas SSNMR distance restraints typically have an uncertainty of approximately 1 A, the tensor-based experiments report on relative vector (pseudobond) angles with precision of a few degrees. By using 3D techniques of this type, vector angle (VEAN) restraints were determined for the majority of the 56-residue B1 immunoglobulin binding domain of protein G [protein GB1 (a total of 47 HN-HN, 49 HN-HC, and 12 HA-HB restraints)]. By using distance restraints alone in the structure calculations, the overall backbone root-mean-square deviation (bbRMSD) was 1.01 +/- 0.13 A (1.52 +/- 0.12 A for all heavy atoms), which improved to 0.49 +/- 0.05 A (1.19 +/- 0.07 A) on the addition of empirical chemical shift [torsion angle likelihood obtained from shift and sequence similarity (TALOS)] restraints. VEAN restraints further improved the ensemble to 0.31 +/- 0.06 A bbRMSD (1.06 +/- 0.07 A); relative to the structure with distances alone, most of the improvement remained (bbRMSD 0.64 +/- 0.09 A; 1.29 +/- 0.07 A) when TALOS restraints were removed before refinement. These results represent significant progress toward atomic-resolution protein structure determination by SSNMR, capabilities that can be applied to a large range of membrane proteins and fibrils, which are often not amenable to solution NMR or x-ray crystallography.


Assuntos
Nanopartículas/química , Proteínas do Tecido Nervoso/química , Ressonância Magnética Nuclear Biomolecular , Bases de Dados de Proteínas , Marcação por Isótopo , Proteínas do Tecido Nervoso/metabolismo , Dobramento de Proteína , Estrutura Terciária de Proteína , Reprodutibilidade dos Testes , Termodinâmica
3.
J Phys Chem B ; 111(51): 14362-9, 2007 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-18052145

RESUMO

The study of micro- or nanocrystalline proteins by magic-angle spinning (MAS) solid-state NMR (SSNMR) gives atomic-resolution insight into structure in cases when single crystals cannot be obtained for diffraction studies. Subtle differences in the local chemical environment around the protein, including the characteristics of the cosolvent and the buffer, determine whether a protein will form single crystals. The impact of these small changes in formulation is also evident in the SSNMR spectra; however, the changes lead only to correspondingly subtle changes in the spectra. Here, we demonstrate that several formulations of GB1 microcrystals yield very high quality SSNMR spectra, although only a subset of conditions enable growth of single crystals. We have characterized these polymorphs by X-ray powder diffraction and assigned the SSNMR spectra. Assignments of the 13C and 15N SSNMR chemical shifts confirm that the backbone structure is conserved, indicative of a common protein fold, but side chain chemical shifts are changed on the surface of the protein, in a manner dependent upon crystal packing and electrostatic interactions with salt in the mother liquor. Our results demonstrate the ability of SSNMR to reveal minor structural differences among crystal polymorphs. This ability has potential practical utility for studying the formulation chemistry of industrial and therapeutic proteins, as well as for deriving fundamental insights into the phenomenon of single-crystal growth.


Assuntos
Proteínas de Bactérias/química , Cristalização , Espectroscopia de Ressonância Magnética/métodos , Conformação Proteica , Difração de Raios X/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...