Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 9: 1963, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30283434

RESUMO

Ever since the development of the first vaccine more than 200 years ago, vaccinations have greatly decreased the burden of infectious diseases worldwide, famously leading to the eradication of small pox and allowing the restriction of diseases such as polio, tetanus, diphtheria, and measles. A multitude of research efforts focuses on the improvement of established and the discovery of new vaccines such as the HPV (human papilloma virus) vaccine in 2006. However, radical changes in the density, age distribution and traveling habits of the population worldwide as well as the changing climate favor the emergence of old and new pathogens that bear the risk of becoming pandemic threats. In recent years, the rapid spread of severe infections such as HIV, SARS, Ebola, and Zika have highlighted the dire need for global preparedness for pandemics, which necessitates the extremely rapid development and comprehensive distribution of vaccines against potentially previously unknown pathogens. What is more, the emergence of antibiotic resistant bacteria calls for new approaches to prevent infections. Given these changes, established methods for the identification of new vaccine candidates are no longer sufficient to ensure global protection. Hence, new vaccine technologies able to achieve rapid development as well as large scale production are of pivotal importance. This review will discuss viral vector and nucleic acid-based vaccines (DNA and mRNA vaccines) as new approaches that might be able to tackle these challenges to global health.


Assuntos
Controle de Doenças Transmissíveis/métodos , Doenças Transmissíveis/terapia , Surtos de Doenças/prevenção & controle , Vacinação/métodos , Vacinas/imunologia , Animais , Controle de Doenças Transmissíveis/tendências , Doenças Transmissíveis/epidemiologia , Doenças Transmissíveis/imunologia , Saúde Global , Humanos , Vacinação/tendências , Vacinas/administração & dosagem
2.
Int J Parasitol ; 48(12): 925-935, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30176234

RESUMO

IL-6 has a wide range of biological activities that includes anti- and pro-inflammatory aspects. In this study, we investigated the role of IL-6 in immune responses to the rodent filarial nematode Litomosoides sigmodontis, a model for human filarial infections. IL-6-/- mice had a significantly increased worm burden after natural infection compared with wild type controls at early time points p.i. Given that the worm burden in IL-6-/- mice was already increased at the time point the infective larvae reached the pleural cavity, immune responses that may facilitate the migration from the site of infection (skin) via the lymphatics to the pleural cavity were analysed. Increased vascular permeability may facilitate larval migration, but blocking of histamine receptors had no effect on worm burden and vascular permeability was similar between IL-6-/- mice and wild type controls. In contrast, blocking mast cell degranulation reduced the worm burden in IL-6-/- mice partially, suggesting that release of mast cell-derived mediators improves larval migration to some degree. Protective immune responses within the skin were involved, as bypassing the skin barrier by inoculating infective L3s subcutaneously resulted in a comparable worm recovery in both mouse strains. Analysis of the cellular composition by flow cytometry and PCR array in the skin after exposure to filarial extract or L3s, respectively, indicate that the absence of IL-6 results in a delayed recruitment of neutrophils and macrophages to the site of initial infection. These results demonstrate that IL-6 is essentially involved in protective immune responses within the skin that impair migration of infective L3s.


Assuntos
Filariose/imunologia , Filarioidea/imunologia , Interleucina-6/metabolismo , Animais , Movimento Celular , Modelos Animais de Doenças , Filariose/parasitologia , Filarioidea/fisiologia , Interleucina-6/deficiência , Macrófagos/imunologia , Mastócitos/imunologia , Camundongos , Neutrófilos/imunologia , Cavidade Pleural/parasitologia , Pele/imunologia , Pele/parasitologia
3.
PLoS One ; 13(2): e0192717, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29438386

RESUMO

Malaria ranks among the most important infectious diseases worldwide and affects mostly people living in tropical countries. Mechanisms involved in disease progression are still not fully understood and specific treatments that might interfere with cerebral malaria (CM) are limited. Here we show that administration of doxycycline (DOX) prevented experimental CM (ECM) in Plasmodium berghei ANKA (PbA)-infected C57BL/6 wildtype (WT) mice in an IL-10-independent manner. DOX-treated mice showed an intact blood-brain barrier (BBB) and attenuated brain inflammation. Importantly, if WT mice were infected with a 20-fold increased parasite load, they could be still protected from ECM if they received DOX from day 4-6 post infection, despite similar parasitemia compared to control-infected mice that did not receive DOX and developed ECM. Infiltration of T cells and cytotoxic responses were reduced in brains of DOX-treated mice. Analysis of brain tissue by RNA-array revealed reduced expression of chemokines and tumour necrosis factor (TNF) in brains of DOX-treated mice. Furthermore, DOX-administration resulted in brains of the mice in reduced expression of matrix metalloproteinase 2 (MMP2) and granzyme B, which are both factors associated with ECM pathology. Systemic interferon gamma production was reduced and activated peripheral T cells accumulated in the spleen in DOX-treated mice. Our results suggest that DOX targeted inflammatory processes in the central nervous system (CNS) and prevented ECM by impaired brain access of effector T cells in addition to its anti-parasitic effect, thereby expanding the understanding of molecular events that underlie DOX-mediated therapeutic interventions.


Assuntos
Antimaláricos/farmacologia , Doxiciclina/farmacologia , Malária Cerebral/prevenção & controle , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/imunologia , Quimiocinas/metabolismo , Modelos Animais de Doenças , Feminino , Inflamação/imunologia , Inflamação/prevenção & controle , Mediadores da Inflamação/metabolismo , Interleucina-10/metabolismo , Ativação Linfocitária/efeitos dos fármacos , Malária Cerebral/imunologia , Malária Cerebral/parasitologia , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Parasitemia/imunologia , Parasitemia/prevenção & controle , Plasmodium berghei/imunologia , Plasmodium berghei/patogenicidade , Baço/efeitos dos fármacos , Baço/imunologia , Subpopulações de Linfócitos T/efeitos dos fármacos , Subpopulações de Linfócitos T/imunologia
4.
Microbes Infect ; 13(10): 828-36, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21609776

RESUMO

A severe complication of Plasmodium infection is cerebral malaria, a condition mainly attributed to overwhelming inflammatory immune reactions of the host. Murine models differing in susceptibility to experimental cerebral malaria (ECM) allow detailed studies of the host response. We show that ECM- resistant BALB/c mice were driven into interferon gamma- and IL-12-dependent ECM and subsequent death if they received CpG-oligonucleotides after Plasmodium berghei ANKA (PbA) infection. CpG application triggered production of pro-inflammatory cytokines systemically as well in spleen and brain and induced neuropathological symptoms, leading to increased mortality. Experiments with genetically deficient mice confirmed the role of IFN-γ and IL-12 during CpG-triggered immunopathology. Furthermore, the application of CpG and downstream production of pro-inflammatory cytokines contributed to the break down of the blood brain barrier visualized by Evan's Blue, comparable to PbA-infected C57BL/6 mice. Taken together, resistance of BALB/c mice towards ECM development could be altered through induction of pro-inflammatory cytokines by CpG. Therefore, approaches discussed earlier to induce pro-inflammatory immune reactions for malaria protection should be considered with caution.


Assuntos
Barreira Hematoencefálica/imunologia , Barreira Hematoencefálica/patologia , Interleucina-12/imunologia , Malária Cerebral/imunologia , Malária Cerebral/patologia , Plasmodium berghei/imunologia , Plasmodium berghei/patogenicidade , Adjuvantes Imunológicos/administração & dosagem , Animais , Barreira Hematoencefálica/microbiologia , Encéfalo/imunologia , Encéfalo/patologia , Modelos Animais de Doenças , Azul Evans/farmacocinética , Feminino , Interferon gama/imunologia , Malária Cerebral/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Oligodesoxirribonucleotídeos/administração & dosagem , Doenças dos Roedores/imunologia , Doenças dos Roedores/patologia , Baço/imunologia , Baço/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...