Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Cogn Emot ; : 1-22, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773881

RESUMO

The notion of sound symbolism receives increasing interest in psycholinguistics. Recent research - including empirical effects of affective phonological iconicity on language processing (Adelman et al., 2018; Conrad et al., 2022) - suggested language codes affective meaning at a basic phonological level using specific phonemes as sublexical markers of emotion. Here, in a series of 8 rating-experiments, we investigate the sensitivity of language users to assumed affectively-iconic systematic distribution patterns of phonemes across the German vocabulary:After computing sublexical-affective-values (SAV) concerning valence and arousal for the entire German phoneme inventory according to occurrences of syllabic onsets, nuclei and codas in a large-scale affective normative lexical database, we constructed pseudoword material differing in SAV to test for subjective affective impressions.Results support affective iconicity as affective ratings mirrored sound-to-meaning correspondences in the lexical database. Varying SAV of otherwise semantically meaningless pseudowords altered affective impressions: Higher arousal was consistently assigned to pseudowords made of syllabic constituents more often used in high-arousal words - contrasted by less straightforward effects of valence SAV. Further disentangling specific differential effects of the two highly-related affective dimensions valence and arousal, our data clearly suggest arousal, rather than valence, as the relevant dimension driving affective iconicity effects.

2.
bioRxiv ; 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38496568

RESUMO

During corneal wound healing, stromal keratocytes transform into a repair phenotype that is driven by the release of cytokines, like transforming growth factor-beta 1 (TGF-ß1) and platelet-derived growth factor-BB (PDGF-BB). Previous work has shown that TGF-ß1 promotes the myofibroblast differentiation of corneal keratocytes in a manner that depends on PDGF signaling. In addition, changes in mechanical properties are known to regulate the TGF-ß1-mediated differentiation of cultured keratocytes. While PDGF signaling acts synergistically with TGF-ß1 during myofibroblast differentiation, how treatment with multiple growth factors affects stiffness-dependent differences in keratocyte behavior is unknown. Here, we treated primary corneal keratocytes with PDGF-BB and TGF-ß1 and cultured them on polyacrylamide (PA) substrata of different stiffnesses. In the presence of TGF-ß1 alone, the cells underwent stiffness-dependent myofibroblast differentiation. On stiff substrata, the cells developed robust stress fibers, exhibited high levels of ⍺-SMA staining, formed large focal adhesions (FAs), and exerted elevated contractile forces, whereas cells in a compliant microenvironment showed low levels of ⍺-SMA immunofluorescence, formed smaller focal adhesions, and exerted decreased contractile forces. When the cultured keratocytes were treated simultaneously with PDGF-BB however, increased levels of ⍺-SMA staining and stress fiber formation were observed on compliant substrata, even though the cells did not exhibit elevated contractility or focal adhesion size. Pharmacological inhibition of PDGF signaling disrupted the myofibroblast differentiation of cells cultured on substrata of all stiffnesses. These results indicate that treatment with PDGF-BB can decouple molecular markers of myofibroblast differentiation from the elevated contractile phenotype otherwise associated with these cells, suggesting that crosstalk in the mechanotransductive signaling pathways downstream of TGF-ß1 and PDGF-BB can regulate the stiffness-dependent differentiation of cultured keratocytes. Statement of Significance: In vitro experiments have shown that changes in ECM stiffness can regulate the differentiation of myofibroblasts. Typically, these assays involve the use of individual growth factors, but it is unclear how stiffness-dependent differences in cell behavior are affected by multiple cytokines. Here, we used primary corneal keratocytes to show that treatment with both TGF-ß1 and PDGF-BB disrupts the dependency of myofibroblast differentiation on substratum stiffness. In the presence of both growth factors, keratocytes on soft substrates exhibited elevated ⍺-SMA immunofluorescence without a corresponding increase in contractility or focal adhesion formation. This result suggests that molecular markers of myofibroblast differentiation can be dissociated from the elevated contractile behavior associated with the myofibroblast phenotype, suggesting potential crosstalk in mechanotransductive signaling pathways downstream of TGF-ß1 and PDGF-BB.

3.
bioRxiv ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38464034

RESUMO

Purpose: After stromal injury to the cornea, the release of growth factors and pro-inflammatory cytokines promotes the activation of quiescent keratocytes into a migratory fibroblast and/or fibrotic myofibroblast phenotype. Persistence of the myofibroblast phenotype can lead to corneal fibrosis and scarring, which are leading causes of blindness worldwide. This study aims to establish comprehensive transcriptional profiles for cultured corneal keratocytes, fibroblasts, and myofibroblasts to gain insights into the mechanisms through which these phenotypic changes occur. Methods: Primary rabbit corneal keratocytes were cultured in either defined serum-free media (SF), fetal bovine serum (FBS) containing media, or in the presence of TGF-ß1 to induce keratocyte, fibroblast, or myofibroblast phenotypes, respectively. Bulk RNA sequencing followed by bioinformatic analyses was performed to identify significant differentially expressed genes (DEGs) and enriched biological pathways for each phenotype. Results: Genes commonly associated with keratocytes, fibroblasts, or myofibroblasts showed high relative expression in SF, FBS, or TGF-ß1 culture conditions, respectively. Differential expression and functional analyses revealed novel DEGs for each cell type, as well as enriched pathways indicative of differences in proliferation, apoptosis, extracellular matrix (ECM) synthesis, cell-ECM interactions, cytokine signaling, and cell mechanics. Conclusions: Overall, these data demonstrate distinct transcriptional differences among cultured corneal keratocytes, fibroblasts, and myofibroblasts. We have identified genes and signaling pathways that may play important roles in keratocyte differentiation, including many related to mechanotransduction and ECM biology. Our findings have revealed novel molecular markers for each cell type, as well as possible targets for modulating cell behavior and promoting physiological corneal wound healing.

4.
Lab Chip ; 24(3): 615-628, 2024 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-38189525

RESUMO

Excessive release of neutrophil extracellular traps (NETs) has been reported in various human pathologies, including COVID-19 patients. Elevated NET levels serve as a biomarker, indicating increased coagulopathy and immunothrombosis risks in these patients. Traditional immunoassays employed to quantify NET release focus on bulk measurements of released chromatin in simplified microenvironments. In this study, we fabricated a novel NET-array device to quantify NET release from primary human neutrophils with single-cell resolution in the presence of the motile bacteria Pseudomonas aeruginosa PAO1 and inflammatory mediators. The device was engineered to have wide chambers and constricted loops to measure NET release in variably confined spaces. Our open NET-array device enabled immunofluorescent labeling of citrullinated histone H3, a NET release marker. We took time-lapse images of primary healthy human neutrophils releasing NETs in clinically relevant infection and inflammation-rich microenvironments. We then developed a computer-vision-based image processing method to automate the quantification of individual NETs. We showed a significant increase in NET release to Pseudomonas aeruginosa PAO1 when challenged with inflammatory mediators tumor necrosis factor-α [20 ng mL-1] and interleukin-6 [50 ng mL-1], but not leukotriene B4 [20 nM], compared to the infection alone. We also quantified the temporal dynamics of NET release and differences in the relative areas of NETs, showing a high percentage of variable size NET release with combined PAO1 - inflammatory mediator treatment, in the device chambers. Importantly, we demonstrated reduced NET release in the confined loops of our combined infection-inflammation microsystem. Ultimately, our NET-array device stands as a valuable tool, facilitating experiments that enhance our comprehension of the spatiotemporal dynamics of NET release in response to infection within a defined microenvironment. In the future, our system can be used for high throughput and cost-effective screening of novel immunotherapies on human neutrophils in view of the importance of fine-tuning NET release in controlling pathological neutrophil-driven inflammation.


Assuntos
Armadilhas Extracelulares , Humanos , Neutrófilos/microbiologia , Histonas , Inflamação , Mediadores da Inflamação
5.
Langmuir ; 40(5): 2551-2561, 2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-38277615

RESUMO

Many tissues in vivo contain aligned structures such as filaments, fibrils, and fibers, which expose cells to anisotropic structural and topographical cues that range from the nanometer to micrometer scales. Understanding how cell behavior is regulated by these cues during physiological and pathological processes (e.g., wound healing, cancer invasion) requires substrates that can expose cells to anisotropic cues over several length scales. In this study, we developed a novel method of fabricating micropatterns of aligned collagen fibrils of different geometry onto PDMS-coated glass coverslips that allowed us to investigate the roles of topography and confinement on corneal cell behavior. When corneal cells were cultured on micropatterns of aligned collagen fibrils in the absence of confinement, the degree of cell alignment increased from 40 ± 14 to 82 ± 5% as the size of the micropattern width decreased from 750 to 50 µm. Although the cell area (∼2500 µm2), cell length (∼160 µm), and projected nuclear area (∼175 µm2) were relatively constant on the different micropattern widths, cells displayed an increased aspect ratio as the width of the aligned collagen fibril micropatterns decreased. We also observed that the morphology of cells adhering to the surrounding uncoated PDMS was dependent upon both the size of the aligned collagen fibril micropattern and the distance from the micropatterns. When corneal cells were confined to the micropatterns of aligned collagen fibrils by a Pluronic coating to passivate the surrounding area, a similar trend in increasing cell alignment was observed (35 ± 10 to 89 ± 2%). However, the projected nuclear area decreased significantly (∼210 to 130 µm2) as the micropattern width decreased from 750 to 50 µm. The development of this method allows for the deposition of aligned collagen fibril micropatterns of different geometries on a transparent and elastic substrate and provides an excellent model system to investigate the role of anisotropic cues in cell behavior.


Assuntos
Matriz Extracelular , Cicatrização , Colágeno/química
6.
Biosens Bioelectron ; 235: 115340, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37216844

RESUMO

Realtime monitoring of neurotransmitters is of great interest for understanding their fundamental role in a wide range of biological processes in the central and peripheral nervous system, as well as their role, in several degenerative brain diseases. The measurement of acetylcholine in the brain is particularly challenging due to the complex environment of the brain and the low concentration and short lifetime of acetylcholine. In this paper, we demonstrated a novel, label-free biosensor for the detection of Ach using a single enzyme, acetylcholinesterase (ACHE), and electrochemical impedance spectroscopy (EIS). Acetylcholinesterase was covalently immobilized onto the surface of gold microelectrodes through an amine-reactive crosslinker dithiobis(succinimidyl propionate) (DSP). Passivation of the gold electrode with SuperBlock eliminated or reduced any non-specific response to other major interfering neurotransmitter molecules such as dopamine (DA), norepinephrine (NE) and epinephrine (EH). The sensors were able to detect acetylcholine over a wide concentration range (5.5-550 µM) in sample volumes as small as 300 µL by applying a 10 mV AC voltage at a frequency of 500 Hz. The sensors showed a linear relationship between Ach concentration and ΔZmod(R2 = 0.99) in PBS. The sensor responded to acetylcholine not only when evaluated in a simple buffer (PBS buffer) but in several more complex environments such as rat brain slurry and rat whole blood. The sensor remained responsive to acetylcholine after being implanted ex vivo in rat brain tissue. These results bode well for the future application of these novel sensors for real time in vivo monitoring of acetylcholine.


Assuntos
Acetilcolinesterase , Técnicas Biossensoriais , Animais , Ratos , Acetilcolinesterase/química , Acetilcolina , Impedância Elétrica , Técnicas Eletroquímicas/métodos , Técnicas Biossensoriais/métodos , Microeletrodos , Ouro/química
7.
J Funct Biomater ; 14(4)2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37103307

RESUMO

During corneal wound healing, corneal keratocytes are exposed to both biophysical and soluble cues that cause them to transform from a quiescent state to a repair phenotype. How keratocytes integrate these multiple cues simultaneously is not well understood. To investigate this process, primary rabbit corneal keratocytes were cultured on substrates patterned with aligned collagen fibrils and coated with adsorbed fibronectin. After 2 or 5 days of culture, keratocytes were fixed and stained to assess changes in cell morphology and markers of myofibroblastic activation by fluorescence microscopy. Initially, adsorbed fibronectin had an activating effect on the keratocytes as evidenced by changes in cell shape, stress fiber formation, and expression of alpha-smooth muscle actin (α-SMA). The magnitude of these effects depended upon substrate topography (i.e., flat substrate vs aligned collagen fibrils) and decreased with culture time. When keratocytes were simultaneously exposed to adsorbed fibronectin and soluble platelet-derived growth factor-BB (PDGF-BB), the cells elongated and had reduced expression of stress fibers and α-SMA. In the presence of PDGF-BB, keratocytes plated on the aligned collagen fibrils elongated in the direction of the fibrils. These results provide new information on how keratocytes respond to multiple simultaneous cues and how the anisotropic topography of aligned collagen fibrils influences keratocyte behavior.

8.
Front Cell Dev Biol ; 10: 886759, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35693927

RESUMO

Following injury and refractive surgery, corneal wound healing can initiate a protracted fibrotic response that interferes with ocular function. This fibrosis is related, in part, to the myofibroblast differentiation of corneal keratocytes in response to transforming growth factor beta 1 (TGF-ß1). Previous studies have shown that changes in the mechanical properties of the extracellular matrix (ECM) can regulate this process, but the mechanotransductive pathways that govern stiffness-dependent changes in keratocyte differentiation remain unclear. Here, we used a polyacrylamide (PA) gel system to investigate how mechanosensing via focal adhesions (FAs) regulates the stiffness-dependent myofibroblast differentiation of primary corneal keratocytes treated with TGF-ß1. Soft (1 kPa) and stiff (10 kPa) PA substrata were fabricated on glass coverslips, plated with corneal keratocytes, and cultured in defined serum free media with or without exogenous TGF-ß1. In some experiments, an inhibitor of focal adhesion kinase (FAK) activation was also added to the media. Cells were fixed and stained for F-actin, as well as markers for myofibroblast differentiation (α-SMA), actomyosin contractility phosphorylated myosin light chain (pMLC), focal adhesions (vinculin), or Smad activity (pSmad3). We also used traction force microscopy (TFM) to quantify cellular traction stresses. Treatment with TGF-ß1 elicited stiffness-dependent differences in the number, size, and subcellular distribution of FAs, but not in the nuclear localization of pSmad3. On stiff substrata, cells exhibited large FAs distributed throughout the entire cell body, while on soft gels, the FAs were smaller, fewer in number, and localized primarily to the distal tips of thin cellular extensions. Larger and increased numbers of FAs correlated with elevated traction stresses, increased levels of α-SMA immunofluorescence, and more prominent and broadly distributed pMLC staining. Inhibition of FAK disrupted stiffness-dependent differences in keratocyte contractility, FA patterning, and myofibroblast differentiation in the presence of TGF-ß1. Taken together, these data suggest that signaling downstream of FAs has important implications for the stiffness-dependent myofibroblast differentiation of corneal keratocytes.

9.
Exp Eye Res ; 220: 109112, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35595094

RESUMO

During corneal wound healing, keratocytes present within the corneal stroma become activated into a repair phenotype upon the release of growth factors, such as transforming growth factor-beta 1 (TGF-ß1) and platelet-derived growth factor-BB (PDGF-BB). The process of injury and repair can lead to changes in the mechanical properties of the tissue, and previous work has shown that the TGF-ß1-mediated myofibroblast differentiation of corneal keratocytes depends on substratum stiffness. It is still unclear, however, if changes in stiffness can modulate keratocyte behavior in response to other growth factors, such as PDGF-BB. Here, we used a polyacrylamide (PA) gel system to determine whether changes in stiffness influence the proliferation and motility of primary corneal keratocytes treated with PDGF-BB. In the presence of PDGF-BB, cells on stiffer substrata exhibited a more elongated morphology and had higher rates of proliferation than cells in a more compliant microenvironment. Using a freeze-injury to assay cell motility, however, we did not observe any stiffness-dependent differences in the migration of keratocytes treated with PDGF-BB. Taken together, these data highlight the importance of biophysical cues during corneal wound healing and suggest that keratocytes respond differently to changes in ECM stiffness in the presence of different growth factors.


Assuntos
Ceratócitos da Córnea , Fator de Crescimento Transformador beta1 , Becaplermina/farmacologia , Movimento Celular , Proliferação de Células , Células Cultivadas , Fator de Crescimento Derivado de Plaquetas
10.
ASAIO J ; 68(8): 1036-1043, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34772849

RESUMO

Infection is a serious adverse event limiting left ventricular assist device (LVAD) therapy in advanced heart failure patients, but a reliable means to identify patients at increased risk of infection is still lacking. We hypothesized that preoperative elevated levels of plasma Oncostatin M (OSM), a cytokine marker of leukocyte activation and inflammation, would be predictive of subsequent infection. We measured plasma OSM in 41 LVAD patients one day before LVAD implantation and postoperatively over two months. Preoperative plasma OSM levels were normal in 27 patients (group A, 4.9 ± 3.2 pg/ml) but elevated in 14 patients (group B, 1649.0 ± 458.9 pg/ml) ( p = 0.003). Early postoperative levels rose in both groups and declined rapidly in group A, with group B declining slowly over two months. Significantly more infections developed in group B than group A patients over two months postimplantation ( p = 0.004). No other routine clinical assessment or laboratory testing afforded this differentiation. These findings suggest that preoperative plasma OSM levels may assist in identifying patients at increased risk of infections after LVAD implantation.


Assuntos
Insuficiência Cardíaca , Coração Auxiliar , Biomarcadores , Coração Auxiliar/efeitos adversos , Humanos , Oncostatina M , Estudos Retrospectivos , Fatores de Tempo , Resultado do Tratamento
11.
J Artif Organs ; 24(2): 135-145, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33420875

RESUMO

Microparticles are produced by various cells due to a number of different stimuli in the circulatory system. Shear stress has been shown to injure red blood cells resulting in hemolysis or non-reversible sub-hemolytic damage. We hypothesized that, in the sub-hemolytic shear range, there exist sufficient mechanical stimuli for red blood cells to respond with production of microparticles. Red blood cells isolated from blood of healthy volunteers were exposed to high shear stress in a microfluidic channel to mimic mechanical trauma similar to that occurring in ventricular assist devices. Utilizing flow cytometry techniques, both an increase of shear rate and exposure time showed higher concentrations of red blood cell microparticles. Controlled shear rate exposure shows that red blood cell microparticle concentration may be indicative of sub-hemolytic damage to red blood cells. In addition, properties of these red blood cell microparticles produced by shear suggest that mechanical trauma may underlie some complications for cardiovascular patients.


Assuntos
Micropartículas Derivadas de Células , Eritrócitos , Coração Auxiliar/efeitos adversos , Estresse Mecânico , Hemólise , Humanos
12.
Biophys J ; 119(9): 1865-1877, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33080219

RESUMO

After surgery or traumatic injury, corneal wound healing can cause a scarring response that stiffens the tissue and impairs ocular function. This fibrosis is caused in part by the activation of corneal keratocytes from a native mechanically quiescent state to an activated myofibroblastic state. This transformation is tied to signaling downstream of transforming growth factor-ß1 (TGF-ß1). Here, to better understand how biochemical and biophysical cues interact to regulate keratocyte activation and contractility, we cultured primary rabbit corneal keratocytes on flexible substrata of varying stiffness in the presence (or absence) of TGF-ß1. Time-lapse fluorescence microscopy was used to assess changes in keratocyte morphology, as well as to quantify the dynamic traction stresses exerted by cells under different experimental conditions. In other experiments, keratocytes were fixed after 5 days of culture and stained for markers of both contractility and myofibroblastic activation. Treatment with TGF-ß1 elicited distinct phenotypes on substrata of different stiffnesses. Cells on soft (1 kPa) gels formed fewer stress fibers and retained a more dendritic morphology, indicative of a quiescent keratocyte phenotype. Keratocytes cultured on stiff (10 kPa) gels or collagen-coated glass coverslips, however, had broad morphologies, formed abundant stress fibers, exhibited greater levels of α-smooth muscle actin (α-SMA) expression, and exerted larger traction forces. Confocal images of phospho-myosin light chain (pMLC) immunofluorescence, moreover, revealed stiffness-dependent differences in the subcellular distribution of actomyosin contractility, with pMLC localized at the tips of thin cellular processes in mechanically quiescent cells. Importantly, keratocytes cultured in the absence of TGF-ß1 showed no stiffness-dependent differences in α-SMA immunofluorescence, suggesting that a stiff microenvironment alone is insufficient to induce myofibroblastic activation. Taken together, these data suggest that changes in ECM stiffness can modulate the morphology, cytoskeletal organization, and subcellular pattern of force generation in corneal keratocytes treated with TGF-ß1.


Assuntos
Ceratócitos da Córnea , Fator de Crescimento Transformador beta1 , Animais , Células Cultivadas , Córnea , Fibroblastos , Miofibroblastos , Coelhos
13.
Exp Eye Res ; 200: 108228, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32919993

RESUMO

In vivo, corneal keratocytes reside within a complex 3D extracellular matrix (ECM) consisting of highly aligned collagen lamellae, growth factors, and other extracellular matrix components, and are subjected to various mechanical stimuli during developmental morphogenesis, fluctuations in intraocular pressure, and wound healing. The process by which keratocytes convert changes in mechanical stimuli (e.g. local topography, applied force, ECM stiffness) into biochemical signaling is known as mechanotransduction. Activation of the various mechanotransductive pathways can produce changes in cell migration, proliferation, and differentiation. Here we review how corneal keratocytes respond to and integrate different biochemical and biophysical factors. We first highlight how growth factors and other cytokines regulate the activity of Rho GTPases, cytoskeletal remodeling, and ultimately the mechanical phenotype of keratocytes. We then discuss how changes in the mechanical properties of the ECM have been shown to regulate keratocyte behavior in sophisticated 2D and 3D experimental models of the corneal microenvironment. Finally, we discuss how ECM topography and protein composition can modulate cell phenotypes, and review the different methods of fabricating in vitro mimics of corneal ECM topography, novel approaches for examining topographical effects in vivo, and the impact of different ECM glycoproteins and proteoglycans on keratocyte behavior.


Assuntos
Ceratócitos da Córnea/fisiologia , Matriz Extracelular/metabolismo , Contagem de Células , Diferenciação Celular , Movimento Celular , Células Cultivadas , Ceratócitos da Córnea/citologia , Humanos , Mecanotransdução Celular , Microscopia Confocal
14.
Sci Rep ; 9(1): 19443, 2019 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-31857631

RESUMO

Red blood cells (RBCs) passing through heart pumps, prosthetic heart valves and other cardiovascular devices undergo early senescence attributed to non-physiologic forces. We hypothesized that mechanical trauma accelerates aging by deformation of membrane proteins to cause binding of naturally occurring IgG. RBCs isolated from blood of healthy volunteers were exposed to high shear stress in a viscometer or microfluidics channel to mimic mechanical trauma and then incubated with autologous plasma. Increased binding of IgG was observed indicating forces caused conformational changes in a membrane protein exposing an epitope(s), probably the senescent cell antigen of band 3. The binding of immunoglobulin suggests it plays a role in the premature sequestration and phagocytosis of RBCs in the spleen. Measurement of IgG holds promise as a marker foreshadowing complications in cardiovascular patients and as a means to improve the design of medical devices in which RBCs are susceptible to sublethal trauma.


Assuntos
Autoimunidade , Viscosidade Sanguínea , Eritrócitos/patologia , Próteses Valvulares Cardíacas/efeitos adversos , Coração Auxiliar/efeitos adversos , Autoanticorpos/imunologia , Autoanticorpos/metabolismo , Circulação Sanguínea , Doenças Cardiovasculares/cirurgia , Procedimentos Cirúrgicos Cardiovasculares/efeitos adversos , Procedimentos Cirúrgicos Cardiovasculares/instrumentação , Membrana Celular/imunologia , Membrana Celular/metabolismo , Epitopos/imunologia , Epitopos/metabolismo , Envelhecimento Eritrocítico/imunologia , Eritrócitos/citologia , Eritrócitos/imunologia , Humanos , Imunoglobulina G/imunologia , Imunoglobulina G/metabolismo , Proteínas de Membrana/imunologia , Proteínas de Membrana/metabolismo , Desenho de Prótese , Resistência ao Cisalhamento , Estresse Mecânico
15.
Biomed Microdevices ; 21(4): 99, 2019 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-31741114

RESUMO

In vivo, keratocytes are surrounded by aligned type I collagen fibrils that are organized into lamellae. A growing body of literature suggests that the unique topography of the corneal stroma is an important regulator of keratocyte behavior. In this study we describe a microfluidic method to deposit aligned fibrils of type I collagen onto glass coverslips. This high-throughput method allowed for the simultaneous coating of up to eight substrates with aligned collagen fibrils. When these substrates were integrated into a PDMS microwell culture system they provided a platform for high-resolution imaging of keratocyte behavior. Through the use of wide-field fluorescence and differential interference contrast microscopy, we observed that the density of collagen fibrils deposited was dependent upon both the perfusion shear rate of collagen and the time of perfusion. In contrast, a similar degree of fibril alignment was observed over a range of shear rates. When primary normal rabbit keratocytes (NRK) were seeded on substrates with a high density of aligned collagen fibrils and cultured in the presence of platelet derived growth factor (PDGF) the keratocytes displayed an elongated cell body that was co-aligned with the underlying collagen fibrils. In contrast, when NRK were cultured on substrates with a low density of aligned collagen fibrils, the cells showed no preferential orientation. These results suggest that this simple and inexpensive method can provide a general platform to study how simultaneous exposure to topographical and soluble cues influence cell behavior.


Assuntos
Colágeno/metabolismo , Ceratócitos da Córnea/citologia , Ceratócitos da Córnea/metabolismo , Dispositivos Lab-On-A-Chip , Animais , Fenômenos Biomecânicos , Coelhos , Resistência ao Cisalhamento
16.
Front Immunol ; 10: 1472, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31338092

RESUMO

The mortality rate of patients with critical illness has decreased significantly over the past two decades, but the rate of decline has slowed recently, with organ dysfunction as a major driver of morbidity and mortality. Among patients with the systemic inflammatory response syndrome (SIRS), acute lung injury is a common component with serious morbidity. Previous studies in our laboratory using a murine model of SIRS demonstrated a key role for NADPH oxidase 2 (Nox2)-derived reactive oxygen species in the resolution of inflammation. Nox2-deficient (gp91phox-/y) mice develop profound lung injury secondary to SIRS and fail to resolve inflammation. Alveolar macrophages from gp91phox-/y mice express greater levels of chemotactic and pro-inflammatory factors at baseline providing evidence that Nox2 in alveolar macrophages is critical for homeostasis. Based on the lung pathology with increased thrombosis in gp91phox-/y mice, and the known role of platelets in the inflammatory process, we hypothesized that Nox2 represses platelet activation. In the mouse model, we found that platelet-derived chemokine (C-X-C motif) ligand 4 (CXCL4) and CXCL7 were increased in the bronchoalveolar fluid of gp91phox-/y mice at baseline and 24 h post intraperitoneal zymosan-induced SIRS consistent with platelet activation. Activated platelets interact with leukocytes via P-selectin glycoprotein ligand 1 (PSGL-1). Within 2 h of SIRS induction, alveolar neutrophil PSGL-1 expression was higher in gp91phox-/y mice. Platelet-neutrophil interactions were decreased in the peripheral blood of gp91phox-/y mice consistent with movement of activated platelets to the lung of mice lacking Nox2. Based on the severe lung pathology and the role of platelets in the formation of neutrophil extracellular traps (NETs), we evaluated NET production. In contrast to previous studies demonstrating Nox2-dependent NET formation, staining of lung sections from mice 24 h post zymosan injection revealed a large number of citrullinated histone 3 (H3CIT) and myeloperoxidase positive cells consistent with NET formation in gp91phox-/y mice that was virtually absent in WT mice. In addition, H3CIT protein expression and PAD4 activity were higher in the lung of gp91phox-/y mice post SIRS induction. These results suggest that Nox2 plays a critical role in maintaining homeostasis by regulating platelet activation and NET formation in the lung.


Assuntos
Lesão Pulmonar Aguda/patologia , Armadilhas Extracelulares/imunologia , NADPH Oxidase 2/metabolismo , Ativação Plaquetária/imunologia , Síndrome de Resposta Inflamatória Sistêmica/patologia , Animais , Quimiocinas CXC/metabolismo , Modelos Animais de Doenças , Pulmão/patologia , Macrófagos Alveolares/imunologia , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Neutrófilos/imunologia , Fator Plaquetário 4/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptores Imunológicos/genética
17.
Micromachines (Basel) ; 10(2)2019 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-30795574

RESUMO

In vitro systems comprised of wells interconnected by microchannels have emerged as a platform for the study of cell migration or multicellular models. In the present study, we systematically evaluated the effect of microchannel width on spontaneous myoblast migration across these microchannels-from the proximal to the distal chamber. Myoblast migration was examined in microfluidic devices with varying microchannel widths of 1.5⁻20 µm, and in chips with uniform microchannel widths over time spans that are relevant for myoblast-to-myofiber differentiation in vitro. We found that the likelihood of spontaneous myoblast migration was microchannel width dependent and that a width of 3 µm was necessary to limit spontaneous migration below 5% of cells in the seeded well after 48 h. These results inform the future design of Polydimethylsiloxane (PDMS) microchannel-based co-culture platforms as well as future in vitro studies of myoblast migration.

18.
J Exp Psychol Gen ; 147(10): 1544-1552, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30272466

RESUMO

The arbitrary relation between sound and meaning is a fundamental assumption of modern linguistic theory. However, psycholinguistic literature also reports evidence for iconicity of phonological symbols. Here, we focus on phonological iconicity or sound-meaning mappings with regard to affective word content. Analyses of affective ratings for a large-scale database of German words suggest potential sublexical affective values for certain graphemes, as they occur more frequently in words of certain affective meaning. Using a letter-search task, we investigate how these systematic mappings between phonology and affective word content influence online language processing. Responses were generally shorter for high-arousal target graphemes-involving crucial interactions with affective word content. Iconic form-meaning mappings regarding affective content seem to influence both the organization of the vocabulary and the processing of language using phonological units of high perceptual salience to iconically encode threat or alert. (PsycINFO Database Record (c) 2018 APA, all rights reserved).


Assuntos
Afeto/fisiologia , Nível de Alerta/fisiologia , Psicolinguística , Leitura , Adulto , Feminino , Humanos , Masculino , Reconhecimento Visual de Modelos/fisiologia , Adulto Jovem
19.
J Funct Biomater ; 9(4)2018 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-30248890

RESUMO

BACKGROUND: Corneal stromal cells (keratocytes) are responsible for developing and maintaining normal corneal structure and transparency, and for repairing the tissue after injury. Corneal keratocytes reside between highly aligned collagen lamellae in vivo. In addition to growth factors and other soluble biochemical factors, feedback from the extracellular matrix (ECM) itself has been shown to modulate corneal keratocyte behavior. METHODS: In this study, we fabricate aligned collagen substrates using a microfluidics approach and assess their impact on corneal keratocyte morphology, cytoskeletal organization, and patterning after stimulation with platelet derived growth factor (PDGF) or transforming growth factor beta 1 (TGFß). We also use time-lapse imaging to visualize the dynamic interactions between cells and fibrillar collagen during wound repopulation following an in vitro freeze injury. RESULTS: Significant co-alignment between keratocytes and aligned collagen fibrils was detected, and the degree of cell/ECM co-alignment further increased in the presence of PDGF or TGFß. Freeze injury produced an area of cell death without disrupting the collagen. High magnification, time-lapse differential interference contrast (DIC) imaging allowed cell movement and subcellular interactions with the underlying collagen fibrils to be directly visualized. CONCLUSIONS: With continued development, this experimental model could be an important tool for accessing how the integration of multiple biophysical and biochemical signals regulate corneal keratocyte differentiation.

20.
Biomed Microdevices ; 20(3): 52, 2018 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-29938310

RESUMO

Efficient intracellular cargo delivery is a key hurdle for the translation of many emerging stem cell and cellular reprogramming therapies. Recently, a microfluidic-based device constructed from silicon was shown to transduce macromolecules into cells via shear-induced formation of plasma membrane pores. However, the scalability and widespread application of the current platform is limited since physical deformation-mediated delivery must be optimized for each therapeutic application. Therefore, we sought to create a low-cost, versatile device that could facilitate rapid prototyping and application-specific optimization in most academic research labs. Here we describe the design and implementation of a microfluidic device constructed from Polydimethylsiloxane (PDMS) that we call Cyto-PDMS (Cytoplasmic PDMS-based Delivery and Modification System). Using a systematic Cyto-PDMS workflow, we demonstrate intracellular cargo delivery with minimal effects on cellular viability. We identify specific flow rates at which a wide range of cargo sizes (1-70 kDa) can be delivered to the cell interior. As a proof-of-principle for the biological utility of Cyto-PDMS, we show (i) F-actin labeling in live human fibroblasts and (ii) intracellular delivery of recombinant Cre protein with appropriate genomic recombination in recipient fibroblasts. Taken together, our results demonstrate that Cyto-PDMS can deliver small-molecules to the cytoplasm and biologically active cargo to the nucleus without major effects on viability. We anticipate that the cost and versatility of PDMS can be leveraged to optimize delivery to a broad array of possible cell types and thus expand the potential impact of cellular therapies.


Assuntos
Fibroblastos/metabolismo , Dispositivos Lab-On-A-Chip , Actinas/metabolismo , Animais , Linhagem Celular , Sobrevivência Celular , Dimetilpolisiloxanos , Portadores de Fármacos/química , Desenho de Equipamento , Fibroblastos/citologia , Humanos , Camundongos , Peso Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...