Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arch Pharm (Weinheim) ; 357(2): e2300536, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37932028

RESUMO

Although histone deacetylase (HDAC) inhibitors show promise in treating various types of hematologic malignancies, they have some limitations, including poor pharmacokinetics and off-target side effects. Prodrug design has shown promise as an approach to improve pharmacokinetic properties and to improve target tissue specificity. In this work, several bioreductive prodrugs for class I HDACs were designed based on known selective HDAC inhibitors. The zinc-binding group of the HDAC inhibitors was masked with various nitroarylmethyl residues to make them substrates of nitroreductase (NTR). The developed prodrugs showed weak HDAC inhibitory activity compared to their parent inhibitors. The prodrugs were tested against wild-type and NTR-transfected THP1 cells. Cellular assays showed that both 2-nitroimidazole-based prodrugs 5 and 6 were best activated by the NTR and exhibited potent activity against NTR-THP1 cells. Compound 6 showed the highest cellular activity (GI50 = 77 nM) and exhibited moderate selectivity. Moreover, activation of prodrug 6 by NTR was confirmed by liquid chromatography-mass spectrometry analysis, which showed the release of the parent inhibitor after incubation with Escherichia coli NTR. Thus, compound 6 can be considered a novel prodrug selective for class I HDACs, which could be used as a good starting point for increasing selectivity and for further optimization.


Assuntos
Leucemia Mieloide Aguda , Pró-Fármacos , Humanos , Inibidores de Histona Desacetilases/farmacologia , Pró-Fármacos/farmacologia , Pró-Fármacos/química , Terapia Genética , Relação Estrutura-Atividade , Escherichia coli , Leucemia Mieloide Aguda/tratamento farmacológico
2.
Arch Pharm (Weinheim) ; 356(9): e2300149, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37339785

RESUMO

Anticancer drug conjugates are an emerging approach for future cancer treatment. Here, we report a series of hybrid ligands merging the neurohormone melatonin with the approved histone deacetylase (HDAC) inhibitor vorinostat, using melatonin's amide side chain (3a-e), its indolic nitrogen (5a-d), and its ether oxygen (7a-d) as attachment points. Several hybrid ligands showed higher potency thanvorinostat in both HDAC inhibition and cellular assays on different cultured cancer cell lines. In the most potent HDAC1 and HDAC6 inhibitors, 3e, 5c, and 7c, the hydroxamic acid moiety of vorinostat is linked to melatonin through a hexamethylene spacer. Hybrid ligands 5c and 7c were also found to be potent growth inhibitors of MCF-7, PC-3M-Luc, and HL-60 cancer cell lines. As these compounds showed only weak agonist activity at melatonin MT1 receptors, the findings indicate that their anticancer actions are driven by HDAC inhibition.


Assuntos
Antineoplásicos , Melatonina , Neoplasias , Vorinostat/farmacologia , Histona Desacetilases/metabolismo , Histona Desacetilases/farmacologia , Melatonina/farmacologia , Ligantes , Relação Estrutura-Atividade , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Ácidos Hidroxâmicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Histona Desacetilase 1/metabolismo , Histona Desacetilase 1/farmacologia , Desacetilase 6 de Histona
3.
Eur J Med Chem ; 249: 115139, 2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-36736153

RESUMO

For a long time, the development of bromodomain (BD) inhibitors (BDi) was almost exclusively related to the BET family. More recently, BDi for BDs outside the BET family have also been developed. Here we present a novel pan-BDi with micromolar affinities to various BDs, and nanomolar affinities to representatives of BD families I, II (Bromodomain and Extra-Terminal Domain (BET) family), III, and IV. The inhibitor shows a broad activity profile with nanomolar growth inhibition (GI50) values on various cancer cell lines. Subsequently, we were able to control the selectivity of the inhibitor by simple modifications and turned it into a highly selective BRD9 inhibitor.


Assuntos
Desenho de Fármacos , Fatores de Transcrição , Humanos , Fatores de Transcrição/metabolismo , Domínios Proteicos , Linhagem Celular , Epigênese Genética
4.
Int J Mol Sci ; 23(14)2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35886887

RESUMO

In addition to involvement in epigenetic gene regulation, histone deacetylases (HDACs) regulate multiple cellular processes through mediating the activity of non-histone protein substrates. The knockdown of HDAC8 isozyme is associated with the inhibition of cell proliferation and apoptosis enhancement in several cancer cell lines. As shown in several studies, HDAC8 can be considered a potential target in the treatment of cancer forms such as childhood neuroblastoma. The present work describes the development of proteolysis targeting chimeras (PROTACs) of HDAC8 based on substituted benzhydroxamic acids previously reported as potent and selective HDAC8 inhibitors. Within this study, we investigated the HDAC8-degrading profiles of the synthesized PROTACs and their effect on the proliferation of neuroblastoma cells. The combination of in vitro screening and cellular testing demonstrated selective HDAC8 PROTACs that show anti-neuroblastoma activity in cells.


Assuntos
Inibidores de Histona Desacetilases , Histona Desacetilases , Neuroblastoma , Humanos , Linhagem Celular Tumoral/metabolismo , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/química , Histona Desacetilases/metabolismo , Neuroblastoma/metabolismo , Proteólise , Proteínas Repressoras/metabolismo
5.
Chembiochem ; 23(14): e202200180, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35608330

RESUMO

Histone deacetylases (HDACs) are important epigenetic regulators involved in many diseases, especially cancer. Five HDAC inhibitors have been approved for anticancer therapy and many are in clinical trials. Among the 11 zinc-dependent HDACs, HDAC10 has received relatively little attention by drug discovery campaigns, despite its involvement, e. g., in the pathogenesis of neuroblastoma. This is due in part to a lack of robust enzymatic conversion assays. In contrast to the protein lysine deacetylase and deacylase activity of most other HDAC subtypes, it has recently been shown that HDAC10 has strong preferences for deacetylation of oligoamine substrates like acetyl-putrescine or -spermidine. Hence, it is also termed a polyamine deacetylase (PDAC). Here, we present the first fluorescent enzymatic conversion assay for HDAC10 using an aminocoumarin-labelled acetyl-spermidine derivative to measure its PDAC activity, which is suitable for high-throughput screening. Using this assay, we identified potent inhibitors of HDAC10-mediated spermidine deacetylation in vitro. Based on the oligoamine preference of HDAC10, we also designed inhibitors with a basic moiety in appropriate distance to the zinc binding hydroxamate that showed potent inhibition of HDAC10 with high selectivity, and we solved a HDAC10-inhibitor structure using X-ray crystallography. We could demonstrate selective cellular target engagement for HDAC10 but a lysosomal phenotype in neuroblastoma cells that was previously associated with HDAC10 inhibition was not observed. Thus, we have developed new chemical probes for HDAC10 that allow further clarification of the biological role of this enzyme.


Assuntos
Neuroblastoma , Espermidina , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Humanos , Neuroblastoma/patologia , Poliaminas/química , Espermidina/química , Espermidina/metabolismo , Zinco
6.
Cell Rep ; 37(12): 110129, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34936867

RESUMO

Writing and erasing of posttranslational modifications are crucial to phenotypic plasticity and antigenic variation of eukaryotic pathogens. Targeting pathogens' modification machineries, thus, represents a valid approach to fighting parasitic diseases. However, identification of parasitic targets and the development of selective anti-parasitic drugs still represent major bottlenecks. Here, we show that the zinc-dependent histone deacetylases (HDACs) of the protozoan parasite Trypanosoma cruzi are key regulators that have significantly diverged from their human counterparts. Depletion of T. cruzi class I HDACs tcDAC1 and tcDAC2 compromises cell-cycle progression and division, leading to cell death. Notably, tcDAC2 displays a deacetylase activity essential to the parasite and shows major structural differences with human HDACs. Specifically, tcDAC2 harbors a modular active site with a unique subpocket targeted by inhibitors showing substantial anti-parasitic effects in cellulo and in vivo. Thus, the targeting of the many atypical HDACs in pathogens can enable anti-parasitic selective chemical impairment.


Assuntos
Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Trypanosoma cruzi/enzimologia , Trypanosoma cruzi/genética , Trypanosoma cruzi/metabolismo , Animais , Domínio Catalítico , Ciclo Celular , Divisão Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Doença de Chagas/tratamento farmacológico , Doença de Chagas/parasitologia , Chlorocebus aethiops , DNA de Protozoário , Feminino , Teste de Complementação Genética , Inibidores de Histona Desacetilases/química , Histona Desacetilases/química , Interações Hospedeiro-Parasita , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Modelos Moleculares , Filogenia , Conformação Proteica , Processamento de Proteína Pós-Traducional , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Deleção de Sequência , Trypanosoma cruzi/efeitos dos fármacos , Células Vero
7.
Eur J Med Chem ; 225: 113745, 2021 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-34392190

RESUMO

Schistosomiasis is a major neglected parasitic disease that affects more than 265 million people worldwide and for which the control strategy consists of mass treatment with the only available drug, praziquantel. In this study, we chemically optimized our previously reported benzhydroxamate-based inhibitors of Schistosoma mansoni histone deacetylase 8 (smHDAC8). Crystallographic analysis provided insights into the inhibition mode of smHDAC8 activity by the highly potent inhibitor 5o. Structure-based optimization of the novel inhibitors was carried out using the available crystal structures as well as docking studies on smHDAC8. The compounds were evaluated in screens for inhibitory activity against schistosome and human HDACs (hHDAC). The in vitro and docking results were used for detailed structure activity relationships. The synthesized compounds were further investigated for their lethality against the schistosome larval stage using a fluorescence-based assay. The most promising inhibitor 5o showed significant dose-dependent killing of the schistosome larvae and markedly impaired egg laying of adult worm pairs maintained in culture.


Assuntos
Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Esquistossomose/tratamento farmacológico , Animais , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Células HEK293 , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/química , Humanos , Modelos Moleculares , Estrutura Molecular , Proteínas Recombinantes/metabolismo , Schistosoma mansoni/enzimologia , Relação Estrutura-Atividade
8.
Eur J Med Chem ; 212: 112998, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33199154

RESUMO

In this work we describe the synthesis of potent and selective quinolone-based histone deacetylase 6 (HDAC6) inhibitors. The quinolone moiety has been exploited as an innovative bioactive cap-group for HDAC6 inhibition; its synthesis was achieved by applying a multicomponent reaction. The optimization of potency and selectivity of these products was performed by employing computational studies which led to the discovery of the diethylaminomethyl derivatives 7g and 7k as the most promising hit molecules. These compounds were investigated in cellular studies to evaluate their anticancer effect against colon (HCT-116) and histiocytic lymphoma (U9347) cancer cells, showing good to excellent potency, leading to tumor cell death by apoptosis induction. The small molecules 7a, 7g and 7k were able to strongly inhibit the cytoplasmic and slightly the nuclear HDAC enzymes, increasing the acetylation of tubulin and of the lysine 9 and 14 of histone 3, respectively. Compound 7g was also able to increase Hsp90 acetylation levels in HCT-116 cells, thus further supporting its HDAC6 inhibitory profile. Cytotoxicity and mutagenicity assays of these molecules showed a safe profile; moreover, the HPLC analysis of compound 7k revealed good solubility and stability profile.


Assuntos
Desacetilase 6 de Histona/antagonistas & inibidores , Inibidores de Histona Desacetilases/farmacologia , Quinolonas/farmacologia , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Desacetilase 6 de Histona/metabolismo , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/química , Humanos , Camundongos , Modelos Moleculares , Estrutura Molecular , Quinolonas/síntese química , Quinolonas/química , Proteínas Recombinantes/metabolismo , Relação Estrutura-Atividade
9.
J Med Chem ; 63(24): 15603-15620, 2020 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-33275431

RESUMO

Various malignant human diseases show disturbed signaling pathways due to increased activity of proteins within the epigenetic machinery. Recently, various novel inhibitors for epigenetic regulation have been introduced which promise a great therapeutic benefit. Inhibitors for the bromo- and extra-terminal domain (BET) family were of particular interest after inhibitors had shown a strong antiproliferative effect. More recently, the focus has increasingly shifted to bromodomains (BDs) outside the BET family. Based on previously developed inhibitors, we have optimized a small series of 4-acyl pyrroles, which we further analyzed by ITC, X-ray crystallography, selectivity studies, the NCI60 cell-panel, and GI50 determinations for several cancer cell lines. The inhibitors address both, BET and BRD7/9 BDs, with very high affinity and show a strong antiproliferative effect on various cancer cell lines that could not be observed for BD family selective inhibitors. Furthermore, a synergistic effect on breast cancer (MCF-7) and melanoma (SK-MEL-5) was proven.


Assuntos
Antineoplásicos/química , Proteínas Cromossômicas não Histona/antagonistas & inibidores , Proteínas/antagonistas & inibidores , Pirróis/química , Fatores de Transcrição/antagonistas & inibidores , Antineoplásicos/farmacologia , Sítios de Ligação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proteínas Cromossômicas não Histona/metabolismo , Cristalografia por Raios X , Humanos , Cinética , Ligantes , Simulação de Dinâmica Molecular , Domínios Proteicos , Proteínas/metabolismo , Pirróis/metabolismo , Pirróis/farmacologia , Relação Estrutura-Atividade , Fatores de Transcrição/metabolismo
10.
Eur J Med Chem ; 200: 112338, 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32497960

RESUMO

Histone modifying proteins, specifically histone deacetylases (HDACs) and bromodomains, have emerged as novel promising targets for anticancer therapy. In the current work, based on available crystal structures and docking studies, we designed dual inhibitors of both HDAC6/8 and the bromodomain and PHD finger containing protein 1 (BRPF1). Biochemical and biophysical tests showed that compounds 23a,b and 37 are nanomolar inhibitors of both target proteins. Detailed structure-activity relationships were deduced for the synthesized inhibitors which were supported by extensive docking and molecular dynamics studies. Cellular testing in acute myeloid leukemia (AML) cells showed only a weak effect, most probably because of the poor permeability of the inhibitors. We also aimed to analyse the target engagement and the cellular activity of the novel inhibitors by determining the protein acetylation levels in cells by western blotting (tubulin vs histone acetylation), and by assessing their effects on various cancer cell lines.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Antineoplásicos/síntese química , Proteínas de Ligação a DNA/antagonistas & inibidores , Desenho de Fármacos , Desacetilase 6 de Histona/antagonistas & inibidores , Proteínas Repressoras/antagonistas & inibidores , Acetilação/efeitos dos fármacos , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases , Humanos , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Relação Estrutura-Atividade
11.
Front Oncol ; 10: 657, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32426286

RESUMO

Sirtuin 1 (Sirt1) is a NAD+ dependent lysine deacetylase associated with the pathogenesis of various diseases including cancer. In many cancer types Sirt1 expression is increased and higher levels have been associated with metastasis and poor prognosis. However, it was also shown, that Sirt1 can have tumor suppressing properties and in some instances even a dual role for the same cancer type has been reported. Increased Sirt1 activity has been linked to extension of the life span of cells, respectively, organisms by promoting DNA repair processes and downregulation of tumor suppressor proteins. This may have the downside of enhancing tumor growth and metastasis. In mice embryonic fibroblasts depletion of Sirt1 was shown to decrease levels of the DNA damage sensor histone H2AX. Impairment of DNA repair mechanisms by Sirt1 can promote tumorigenesis but also lower chemoresistance toward DNA targeting therapies. Despite many biological studies, there is currently just one small molecule Sirt1 inhibitor in clinical trials. Selisistat (EX-527) reached phase III clinical trials for treatment of Huntington's Disease. New small molecule Sirt1 modulators are crucial for further investigation of the contradicting roles of Sirt1 in cancer. We tested a small library of commercially available compounds that were proposed by virtual screening and docking studies against Sirt1, 2 and 3. A thienopyrimidone featuring a phenyl thiocyanate moiety was found to selectively inhibit Sirt1 with an IC50 of 13 µM. Structural analogs lacking the thiocyanate function did not show inhibition of Sirt1 revealing this group as key for the selectivity and affinity toward Sirt1. Further analogs with higher solubility were identified through iterative docking studies and in vitro testing. The most active compounds (down to 5 µM IC50) were further studied in cells. The ratio of phosphorylated γH2AX to unmodified H2AX is lower when Sirt1 is depleted or inhibited. Our new Sirtuin 1 inhibiting thiocyanates (S1th) lead to similarly lowered γH2AX/H2AX ratios in mouse embryonic fibroblasts as Sirt1 knockout and treatment with the reference inhibitor EX-527. In addition to that we were able to show antiproliferative activity, inhibition of migration and colony forming as well as hyperacetylation of Sirt1 targets p53 and H3 by the S1th in cervical cancer cells (HeLa). These results reveal thiocyanates as a promising new class of selective Sirt1 inhibitors.

12.
J Med Chem ; 62(3): 1138-1166, 2019 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-30645113

RESUMO

The phenothiazine system was identified as a favorable cap group for potent and selective histone deacetylase 6 (HDAC6) inhibitors. Here, we report the preparation and systematic variation of phenothiazines and their analogues containing a benzhydroxamic acid moiety as the zinc-binding group. We evaluated their ability to selectively inhibit HDAC6 by a recombinant HDAC enzyme assay, by determining the protein acetylation levels in cells by western blotting (tubulin vs histone acetylation), and by assessing their effects on various cancer cell lines. Structure-activity relationship studies revealed that incorporation of a nitrogen atom into the phenothiazine framework results in increased potency and selectivity for HDAC6 (more than 500-fold selectivity relative to the inhibition of HDAC1, HDAC4, and HDAC8), as rationalized by molecular modeling and docking studies. The binding mode was confirmed by co-crystallization of the potent azaphenothiazine inhibitor with catalytic domain 2 from Danio rerio HDAC6.


Assuntos
Desacetilase 6 de Histona/antagonistas & inibidores , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/química , Fenotiazinas/química , Acetilação , Animais , Domínio Catalítico , Células Cultivadas , Cristalografia por Raios X , Células HL-60 , Desacetilase 6 de Histona/metabolismo , Inibidores de Histona Desacetilases/química , Humanos , Técnicas In Vitro , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/enzimologia , Microssomos Hepáticos/metabolismo , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade , Peixe-Zebra
13.
J Med Chem ; 61(22): 10000-10016, 2018 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-30347148

RESUMO

Metal-dependent histone deacetylases (HDACs) are key epigenetic regulators that represent promising therapeutic targets for the treatment of numerous human diseases. Yet the currently FDA-approved HDAC inhibitors nonspecifically target at least several of the 11 structurally similar but functionally different HDAC isozymes, which hampers their broad usage in clinical settings. Selective inhibitors targeting single HDAC isozymes are being developed, but precise understanding in molecular terms of their selectivity remains sparse. Here, we show that HDAC8-selective inhibitors adopt a L-shaped conformation required for their binding to a HDAC8-specific pocket formed by HDAC8 catalytic tyrosine and HDAC8 L1 and L6 loops. In other HDAC isozymes, a L1-L6 lock sterically prevents L-shaped inhibitor binding. Shielding of the HDAC8-specific pocket by protein engineering decreases potency of HDAC8-selective inhibitors and affects catalytic activity. Collectively, our results unravel key HDAC8 active site structural and functional determinants important for the design of next-generation chemical probes and epigenetic drugs.


Assuntos
Domínio Catalítico , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/química , Proteínas Repressoras/antagonistas & inibidores , Proteínas Repressoras/química , Sequência de Aminoácidos , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/metabolismo , Histona Desacetilases/metabolismo , Humanos , Ácidos Hidroxâmicos/química , Ácidos Hidroxâmicos/metabolismo , Ácidos Hidroxâmicos/farmacologia , Indóis/química , Indóis/metabolismo , Indóis/farmacologia , Simulação de Dinâmica Molecular , Proteínas Repressoras/metabolismo , Relação Estrutura-Atividade , Especificidade por Substrato , Triazóis/química , Triazóis/metabolismo , Triazóis/farmacologia
14.
ChemMedChem ; 13(15): 1517-1529, 2018 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-29806110

RESUMO

Schistosomiasis is a neglected parasitic disease that affects more than 265 million people worldwide and for which the control strategy relies on mass treatment with only one drug: praziquantel. Based on the 3-chlorobenzothiophene-2-hydroxamic acid J1075, a series of hydroxamic acids with different scaffolds were prepared as potential inhibitors of Schistosoma mansoni histone deacetylase 8 (SmHDAC8). The crystal structures of SmHDAC8 with four inhibitors provided insight into the binding mode and orientation of molecules in the binding pocket as well as the orientation of its flexible amino acid residues. The compounds were evaluated in screens for inhibitory activity against schistosome and human HDACs. The most promising compounds were further investigated for their activity toward the major human HDAC isotypes. The most potent inhibitors were additionally screened for lethality against the schistosome larval stage using a fluorescence-based assay. Two of the compounds showed significant, dose-dependent killing of the schistosome larvae and markedly impaired egg laying of adult worm pairs maintained in culture.


Assuntos
Cinamatos/química , Cinamatos/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/efeitos dos fármacos , Schistosoma mansoni/enzimologia , Esquistossomose/tratamento farmacológico , Animais , Cinamatos/síntese química , Cinamatos/uso terapêutico , Cristalização , Cristalografia por Raios X , Histona Desacetilases/química , Técnicas In Vitro , Simulação de Acoplamento Molecular , Conformação Proteica , Relação Estrutura-Atividade
15.
Molecules ; 23(3)2018 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-29498707

RESUMO

A promising means in the search of new small molecules for the treatment of schistosomiasis (amongst other parasitic ailments) is by targeting the parasitic epigenome. In the present study, a docking based virtual screening procedure using the crystal structure of histone deacetylase 8 from Schistosoma mansoni (smHDAC8) was designed. From the developed screening protocol, we were able to identify eight novel N-(2,5-dioxopyrrolidin-3-yl)-n-alkylhydroxamate derivatives as smHDAC8 inhibitors with IC50 values ranging from 4.4-20.3 µM against smHDAC8. These newly identified inhibitors were further tested against human histone deacetylases (hsHDAC1, 6 and 8), and were found also to be exerting interesting activity against them. In silico prediction of the docking pose of the compounds was confirmed by the resolved crystal structure of one of the identified hits. This confirmed these compounds were able to chelate the catalytic zinc ion in a bidentate fashion, whilst showing an inverted binding mode of the hydroxamate group when compared to the reported smHDAC8/hydroxamates crystal structures. Therefore, they can be considered as new potential scaffold for the development of new smHDAC8 inhibitors by further investigation of their structure-activity relationship.


Assuntos
Anti-Helmínticos/síntese química , Quelantes/síntese química , Proteínas de Helminto/antagonistas & inibidores , Inibidores de Histona Desacetilases/síntese química , Histona Desacetilases/química , Ácidos Hidroxâmicos/síntese química , Pirrolidinas/síntese química , Schistosoma mansoni/efeitos dos fármacos , Animais , Anti-Helmínticos/farmacologia , Apoptose/efeitos dos fármacos , Sítios de Ligação , Quelantes/farmacologia , Cristalografia por Raios X , Expressão Gênica , Proteínas de Helminto/química , Proteínas de Helminto/genética , Proteínas de Helminto/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Ácidos Hidroxâmicos/farmacologia , Simulação de Acoplamento Molecular , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Pirrolidinas/farmacologia , Schistosoma mansoni/enzimologia , Schistosoma mansoni/genética , Schistosoma mansoni/crescimento & desenvolvimento , Relação Estrutura-Atividade , Zinco/química , Zinco/metabolismo
16.
J Med Chem ; 60(24): 10188-10204, 2017 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-29190092

RESUMO

Histone deacetylases (HDACs) are important modulators of epigenetic gene regulation and additionally control the activity of non-histone protein substrates. While for HDACs 1-3 and 6 many potent selective inhibitors have been obtained, for other subtypes much less is known on selective inhibitors and the consequences of their inhibition. The present report describes the development of substituted benzhydroxamic acids as potent and selective HDAC8 inhibitors. Docking studies using available crystal structures have been used for structure-based optimization of this series of compounds. Within this study, we have investigated the role of HDAC8 in the proliferation of cancer cells and optimized hits for potency and selectivity, both in vitro and in cell culture. The combination of structure-based design, synthesis, and in vitro screening to cellular testing resulted in potent and selective HDAC8 inhibitors that showed anti-neuroblastoma activity in cellular testing.


Assuntos
Antineoplásicos/farmacologia , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/farmacologia , Neuroblastoma/tratamento farmacológico , Proteínas Repressoras/antagonistas & inibidores , Antineoplásicos/química , Biomarcadores Tumorais/genética , Linhagem Celular Tumoral , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Histona Desacetilases/química , Histona Desacetilases/metabolismo , Humanos , Ácidos Hidroxâmicos/química , Simulação de Acoplamento Molecular , Neuroblastoma/genética , Neuroblastoma/patologia , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Relação Estrutura-Atividade
17.
ChemMedChem ; 12(24): 2044-2053, 2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-29120081

RESUMO

As histone deacetylases (HDACs) play an important role in the treatment of cancer, their selective inhibition has been the subject of various studies. These continuous investigations have given rise to a large collection of pan- and selective HDAC inhibitors, containing diverse US Food and Drug Administration (FDA)-approved representatives. In previous studies, a class of alkyne-based HDAC inhibitors was presented. We modified this scaffold in two previously neglected regions and compared their cytotoxicity and affinity toward HDAC1, HDAC6, and HDAC8. We were able to show that R-configured propargylamines contribute to increased selectivity for HDAC6. Docking studies on available HDAC crystal structures were carried out to rationalize the observed selectivity of the compounds. Substitution of the aromatic portion by a thiophene derivative results in high affinity and low cytotoxicity, indicating an improved drug tolerance.


Assuntos
Antineoplásicos/farmacologia , Desacetilase 6 de Histona/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Pargilina/análogos & derivados , Propilaminas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/química , Humanos , Estrutura Molecular , Pargilina/síntese química , Pargilina/química , Pargilina/farmacologia , Propilaminas/síntese química , Propilaminas/química , Relação Estrutura-Atividade
18.
Int J Mol Sci ; 17(10)2016 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-27783056

RESUMO

XD14 is a 4-acyl pyrrole derivative, which was discovered by a high-throughput virtual screening experiment. XD14 inhibits bromodomain and extra-terminal domain (BET) proteins (BRD2, BRD3, BRD4 and BRDT) and consequently suppresses cell proliferation. In this study, metabolic profiling reveals the molecular effects in the human breast cancer cell line MCF-7 (Michigan Cancer Foundation-7) treated by XD14. A three-day time series experiment with two concentrations of XD14 was performed. Gas chromatography-mass spectrometry (GC-MS) was applied for untargeted profiling of treated and non-treated MCF-7 cells. The gained data sets were evaluated by several statistical methods: analysis of variance (ANOVA), clustering analysis, principle component analysis (PCA), and partial least squares discriminant analysis (PLS-DA). Cell proliferation was strongly inhibited by treatment with 50 µM XD14. Samples could be discriminated by time and XD14 concentration using PLS-DA. From the 117 identified metabolites, 67 were significantly altered after XD14 treatment. These metabolites include amino acids, fatty acids, Krebs cycle and glycolysis intermediates, as well as compounds of purine and pyrimidine metabolism. This massive intervention in energy metabolism and the lack of available nucleotides could explain the decreased proliferation rate of the cancer cells.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Metaboloma/efeitos dos fármacos , Pirróis/farmacologia , Antineoplásicos/química , Mama/efeitos dos fármacos , Mama/metabolismo , Análise Discriminante , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Análise dos Mínimos Quadrados , Células MCF-7 , Redes e Vias Metabólicas/efeitos dos fármacos , Metabolômica , Análise de Componente Principal , Pirróis/química
19.
Future Med Chem ; 8(13): 1537-51, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27572962

RESUMO

AIM: The histone kinase PRK1 has been identified as a potential target to combat prostate cancer but selective PRK1 inhibitors are lacking. The US FDA -approved JAK1-3 inhibitor tofacitinib also potently inhibits PRK1 in vitro. RESULTS: We show that tofacitinib also inhibits PRK1 in a cellular setting. Using tofacitinib as a starting point for structure-activity relationship studies, we identified a more potent and another more selective PRK1 inhibitor compared with tofacitinib. Furthermore, we found two potential PRK1/JAK3-selectivity hotspots. CONCLUSION: The identified inhibitors and the selectivity hotspots lay the basis for the development of selective PRK1 inhibitors. The identification of PRK1, but also of other cellular tofacitinib targets, has implications on its clinical use and on future development of tofacitinib-like JAK inhibitors. [Formula: see text].


Assuntos
Piperidinas/farmacologia , Proteína Quinase C/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Pirróis/farmacologia , Relação Dose-Resposta a Droga , Humanos , Modelos Moleculares , Estrutura Molecular , Piperidinas/síntese química , Piperidinas/química , Proteína Quinase C/metabolismo , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Pirimidinas/síntese química , Pirimidinas/química , Pirróis/síntese química , Pirróis/química , Relação Estrutura-Atividade
20.
ChemMedChem ; 11(18): 2084-94, 2016 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-27472906

RESUMO

Despite the considerable interest in protein kinase C-related kinase 1 (PRK1) as a target in cancer research, there is still a lack of PRK1 inhibitors with suitable selectivity profiles and physicochemical properties. To identify new PRK1 inhibitors we applied a virtual screening approach, which combines ensemble docking, minimization of the protein-ligand complex, binding free energy calculations, and application of quantitative structure-activity relationship (QSAR) models for predicting in vitro activity. The developed approach was then applied in a prospective manner to screen available libraries of kinase inhibitors from Selleck and GlaxoSmithKline (GSK). Compounds that showed favorable prediction were then tested in vitro for PRK1 inhibition. Some of the hits were found to inhibit PRK1 in the low-nanomolar range. Three in vitro hits were additionally tested in a mass-spectrometry-based cellular kinase profiling assay to examine selectivity. Our findings show that nanomolar and drug-like inhibitors can be identified by the virtual screening approach presented herein. The identified inhibitors are valuable tools for gaining a better understanding of PRK1 inhibition, and the identified hits can serve as starting points for further chemical optimization.


Assuntos
Proteína Quinase C/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Termodinâmica , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Humanos , Estrutura Molecular , Proteína Quinase C/metabolismo , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Relação Quantitativa Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...