Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurology ; 103(1): e209583, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38857458

RESUMO

BACKGROUND AND OBJECTIVES: In light of limited intensive care capacities and a lack of accurate prognostic tools to advise caregivers and family members responsibly, this study aims to determine whether automated cerebral CT (CCT) analysis allows prognostication after out-of-hospital cardiac arrest. METHODS: In this monocentric, retrospective cohort study, a supervised machine learning classifier based on an elastic net regularized logistic regression model for gray matter alterations on nonenhanced CCT obtained after cardiac arrest was trained using 10-fold cross-validation and tested on a hold-out sample (random split 75%/25%) for outcome prediction. Following the literature, a favorable outcome was defined as a cerebral performance category of 1-2 and a poor outcome of 3-5. The diagnostic accuracy was compared with established and guideline-recommended prognostic measures within the sample, that is, gray matter-white matter ratio (GWR), neuron-specific enolase (NSE), and neurofilament light chain (NfL) in serum. RESULTS: Of 279 adult patients, 132 who underwent CCT within 14 days of cardiac arrest with good imaging quality were identified. Our approach discriminated between favorable and poor outcomes with an area under the curve (AUC) of 0.73 (95% CI 0.59-0.82). Thus, the prognostic power outperformed the GWR (AUC 0.66, 95% CI 0.56-0.76). The biomarkers NfL, measured at days 1 and 2, and NSE, measured at day 2, exceeded the reliability of the imaging markers derived from CT (AUC NfL day 1: 0.87, 95% CI 0.75-0.99; AUC NfL day 2: 0.90, 95% CI 0.79-1.00; AUC NSE day: 2 0.78, 95% CI 0.62-0.94). DISCUSSION: Our data show that machine learning-assisted gray matter analysis of CCT images offers prognostic information after out-of-hospital cardiac arrest. Thus, CCT gray matter analysis could become a reliable and time-independent addition to the standard workup with serum biomarkers sampled at predefined time points. Prospective studies are warranted to replicate these findings.


Assuntos
Parada Cardíaca Extra-Hospitalar , Aprendizado de Máquina Supervisionado , Tomografia Computadorizada por Raios X , Humanos , Parada Cardíaca Extra-Hospitalar/diagnóstico por imagem , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Estudos Retrospectivos , Prognóstico , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Encéfalo/diagnóstico por imagem , Estudos de Coortes
2.
Neuroimage Clin ; 40: 103508, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37717383

RESUMO

INTRODUCTION: In clinical practice, differentiating between age-related gray matter (GM) atrophy and neurodegeneration-related atrophy at early disease stages, such as mild cognitive impairment (MCI), remains challenging. We hypothesized that fined-grained adjustment for age effects and using amyloid-negative reference subjects could increase classification accuracy. METHODS: T1-weighted magnetic resonance imaging (MRI) data of 131 cognitively normal (CN) individuals and 91 patients with MCI from the Alzheimer's disease neuroimaging initiative (ADNI) characterized concerning amyloid status, as well as 19 CN individuals and 19 MCI patients from an independent validation sample were segmented, spatially normalized and analyzed in the framework of voxel-based morphometry (VBM). For each participant, statistical maps of GM atrophy were computed as the deviation from the GM of CN reference groups at the voxel level. CN reference groups composed with different degrees of age-matching, and mixed and strictly amyloid-negative CN reference groups were examined regarding their effect on the accuracy in distinguishing between CN and MCI. Furthermore, the effects of spatial smoothing and atrophy threshold were assessed. RESULTS: Approaches with a specific reference group for each age significantly outperformed all other age-adjustment strategies with a maximum area under the curve of 1.0 in the ADNI sample and 0.985 in the validation sample. Accounting for age in a regression-based approach improved classification accuracy over that of a single CN reference group in the age range of the patient sample. Using strictly amyloid-negative reference groups improved classification accuracy only when age was not considered. CONCLUSION: Our results demonstrate that VBM can differentiate between age-related and MCI-associated atrophy with high accuracy. Crucially, age-specific reference groups significantly increased accuracy, more so than regression-based approaches and using amyloid-negative reference groups.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Doença de Alzheimer/patologia , Imageamento por Ressonância Magnética/métodos , Disfunção Cognitiva/patologia , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Proteínas Amiloidogênicas , Atrofia/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...