Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(3)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38339659

RESUMO

Hybrid pixel detectors have become indispensable at synchrotron and X-ray free-electron laser facilities thanks to their large dynamic range, high frame rate, low noise, and large area. However, at energies below 3 keV, the detector performance is often limited because of the poor quantum efficiency of the sensor and the difficulty in achieving single-photon resolution due to the low signal-to-noise ratio. In this paper, we address the quantum efficiency of silicon sensors by refining the design of the entrance window, mainly by passivating the silicon surface and optimizing the dopant profile of the n+ region. We present the measurement of the quantum efficiency in the soft X-ray energy range for silicon sensors with several process variations in the fabrication of planar sensors with thin entrance windows. The quantum efficiency for 250 eV photons is increased from almost 0.5% for a standard sensor to up to 62% as a consequence of these developments, comparable to the quantum efficiency of backside-illuminated scientific CMOS sensors. Finally, we discuss the influence of the various process parameters on quantum efficiency and present a strategy for further improvement.

2.
Nat Hum Behav ; 7(11): 1845-1854, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37985913

RESUMO

What are the psychological factors driving attitudes toward artificial intelligence (AI) tools, and how can resistance to AI systems be overcome when they are beneficial? Here we first organize the main sources of resistance into five main categories: opacity, emotionlessness, rigidity, autonomy and group membership. We relate each of these barriers to fundamental aspects of cognition, then cover empirical studies providing correlational or causal evidence for how the barrier influences attitudes toward AI tools. Second, we separate each of the five barriers into AI-related and user-related factors, which is of practical relevance in developing interventions towards the adoption of beneficial AI tools. Third, we highlight potential risks arising from these well-intentioned interventions. Fourth, we explain how the current Perspective applies to various stakeholders, including how to approach interventions that carry known risks, and point to outstanding questions for future work.


Assuntos
Inteligência Artificial , Transtornos Mentais , Humanos , Cognição , Intenção , Pesquisa Empírica
3.
J Synchrotron Radiat ; 30(Pt 1): 227-234, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36601941

RESUMO

The JUNGFRAU 4-megapixel (4M) charge-integrating pixel-array detector, when operated at a full 2 kHz frame rate, streams data at a rate of 17 GB s-1. To operate this detector for macromolecular crystallography beamlines, a data-acquisition system called Jungfraujoch was developed. The system, running on a single server with field-programmable gate arrays and general-purpose graphics processing units, is capable of handling data produced by the JUNGFRAU 4M detector, including conversion of raw pixel readout to photon counts, compression and on-the-fly spot finding. It was also demonstrated that 30 GB s-1 can be handled in performance tests, indicating that the operation of even larger and faster detectors will be achievable in the future. The source code is available from a public repository.


Assuntos
Software , Síncrotrons , Raios X , Radiografia , Cristalografia por Raios X
4.
Sensors (Basel) ; 21(4)2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33672262

RESUMO

Chromium compensated GaAs or GaAs:Cr sensors provided by the Tomsk State University (Russia) were characterized using the low noise, charge integrating readout chip JUNGFRAU with a pixel pitch of 75 × 75 µm2 regarding its application as an X-ray detector at synchrotrons sources or FELs. Sensor properties such as dark current, resistivity, noise performance, spectral resolution capability and charge transport properties were measured and compared with results from a previous batch of GaAs:Cr sensors which were produced from wafers obtained from a different supplier. The properties of the sample from the later batch of sensors from 2017 show a resistivity of 1.69 × 109 Ω/cm, which is 47% higher compared to the previous batch from 2016. Moreover, its noise performance is 14% lower with a value of (101.65 ± 0.04) e- ENC and the resolution of a monochromatic 60 keV photo peak is significantly improved by 38% to a FWHM of 4.3%. Likely, this is due to improvements in charge collection, lower noise, and more homogeneous effective pixel size. In a previous work, a hole lifetime of 1.4 ns for GaAs:Cr sensors was determined for the sensors of the 2016 sensor batch, explaining the so-called "crater effect" which describes the occurrence of negative signals in the pixels around a pixel with a photon hit due to the missing hole contribution to the overall signal causing an incomplete signal induction. In this publication, the "crater effect" is further elaborated by measuring GaAs:Cr sensors using the sensors from 2017. The hole lifetime of these sensors was 2.5 ns. A focused photon beam was used to illuminate well defined positions along the pixels in order to corroborate the findings from the previous work and to further characterize the consequences of the "crater effect" on the detector operation.

5.
IUCrJ ; 7(Pt 6): 965-975, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33209311

RESUMO

Long-wavelength pulses from the Swiss X-ray free-electron laser (XFEL) have been used for de novo protein structure determination by native single-wavelength anomalous diffraction (native-SAD) phasing of serial femtosecond crystallography (SFX) data. In this work, sensitive anomalous data-quality indicators and model proteins were used to quantify improvements in native-SAD at XFELs such as utilization of longer wavelengths, careful experimental geometry optimization, and better post-refinement and partiality correction. Compared with studies using shorter wavelengths at other XFELs and older software versions, up to one order of magnitude reduction in the required number of indexed images for native-SAD was achieved, hence lowering sample consumption and beam-time requirements significantly. Improved data quality and higher anomalous signal facilitate so-far underutilized de novo structure determination of challenging proteins at XFELs. Improvements presented in this work can be used in other types of SFX experiments that require accurate measurements of weak signals, for example time-resolved studies.

6.
Struct Dyn ; 7(1): 014305, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32128347

RESUMO

In this paper, we present a data workflow developed to operate the adJUstiNg Gain detector FoR the Aramis User station (JUNGFRAU) adaptive gain charge integrating pixel-array detectors at macromolecular crystallography beamlines. We summarize current achievements for operating at 9 GB/s data-rate a JUNGFRAU with 4 Mpixel at 1.1 kHz frame-rate and preparations to operate at 46 GB/s data-rate a JUNGFRAU with 10 Mpixel at 2.2 kHz in the future. In this context, we highlight the challenges for computer architecture and how these challenges can be addressed with innovative hardware including IBM POWER9 servers and field-programmable gate arrays. We discuss also data science challenges, showing the effect of rounding and lossy compression schemes on the MX JUNGFRAU detector images.

7.
J Synchrotron Radiat ; 27(Pt 2): 329-339, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32153271

RESUMO

Detection of heavy elements, such as metals, in macromolecular crystallography (MX) samples by X-ray fluorescence is a function traditionally covered at synchrotron MX beamlines by silicon drift detectors, which cannot be used at X-ray free-electron lasers because of the very short duration of the X-ray pulses. Here it is shown that the hybrid pixel charge-integrating detector JUNGFRAU can fulfill this function when operating in a low-flux regime. The feasibility of precise position determination of micrometre-sized metal marks is also demonstrated, to be used as fiducials for offline prelocation in serial crystallography experiments, based on the specific fluorescence signal measured with JUNGFRAU, both at the synchrotron and at SwissFEL. Finally, the measurement of elemental absorption edges at a synchrotron beamline using JUNGFRAU is also demonstrated.

8.
J Synchrotron Radiat ; 26(Pt 4): 1226-1237, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31274448

RESUMO

Recent advances in segmented low-gain avalanche detectors (LGADs) make them promising for the position-sensitive detection of low-energy X-ray photons thanks to their internal gain. LGAD microstrip sensors fabricated by Fondazione Bruno Kessler have been investigated using X-rays with both charge-integrating and single-photon-counting readout chips developed at the Paul Scherrer Institut. In this work it is shown that the charge multiplication occurring in the sensor allows the detection of X-rays with improved signal-to-noise ratio in comparison with standard silicon sensors. The application in the tender X-ray energy range is demonstrated by the detection of the sulfur Kα and Kß lines (2.3 and 2.46 keV) in an energy-dispersive fluorescence spectrometer at the Swiss Light Source. Although further improvements in the segmentation and in the quantum efficiency at low energy are still necessary, this work paves the way for the development of single-photon-counting detectors in the soft X-ray energy range.

9.
J Synchrotron Radiat ; 26(Pt 1): 74-82, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30655470

RESUMO

The Adaptive Gain Integrating Pixel Detector (AGIPD) is an X-ray imager, custom designed for the European X-ray Free-Electron Laser (XFEL). It is a fast, low-noise integrating detector, with an adaptive gain amplifier per pixel. This has an equivalent noise of less than 1 keV when detecting single photons and, when switched into another gain state, a dynamic range of more than 104 photons of 12 keV. In burst mode the system is able to store 352 images while running at up to 6.5 MHz, which is compatible with the 4.5 MHz frame rate at the European XFEL. The AGIPD system was installed and commissioned in August 2017, and successfully used for the first experiments at the Single Particles, Clusters and Biomolecules (SPB) experimental station at the European XFEL since September 2017. This paper describes the principal components and performance parameters of the system.

10.
Nat Methods ; 15(10): 799-804, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30275593

RESUMO

The accuracy of X-ray diffraction data is directly related to how the X-ray detector records photons. Here we describe the application of a direct-detection charge-integrating pixel-array detector (JUNGFRAU) in macromolecular crystallography (MX). JUNGFRAU features a uniform response on the subpixel level, linear behavior toward high photon rates, and low-noise performance across the whole dynamic range. We demonstrate that these features allow accurate MX data to be recorded at unprecedented speed. We also demonstrate improvements over previous-generation detectors in terms of data quality, using native single-wavelength anomalous diffraction (SAD) phasing, for thaumatin, lysozyme, and aminopeptidase N. Our results suggest that the JUNGFRAU detector will substantially improve the performance of synchrotron MX beamlines and equip them for future synchrotron light sources.


Assuntos
Cristalografia por Raios X/instrumentação , Cristalografia por Raios X/métodos , Coleta de Dados/métodos , Substâncias Macromoleculares/química , Síncrotrons/instrumentação , Antígenos CD13/química , Desenho de Equipamento , Humanos , Modelos Moleculares , Muramidase/química
11.
IUCrJ ; 5(Pt 2): 190-199, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29765609

RESUMO

Electron crystallography is a discipline that currently attracts much attention as method for inorganic, organic and macromolecular structure solution. EIGER, a direct-detection hybrid pixel detector developed at the Paul Scherrer Institut, Switzerland, has been tested for electron diffraction in a transmission electron microscope. EIGER features a pixel pitch of 75 × 75 µm2, frame rates up to 23 kHz and a dead time between frames as low as 3 µs. Cluster size and modulation transfer functions of the detector at 100, 200 and 300 keV electron energies are reported and the data quality is demonstrated by structure determination of a SAPO-34 zeotype from electron diffraction data.

12.
J Synchrotron Radiat ; 23(Pt 6): 1462-1473, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27787252

RESUMO

MÖNCH is a 25 µm-pitch charge-integrating detector aimed at exploring the limits of current hybrid silicon detector technology. The small pixel size makes it ideal for high-resolution imaging. With an electronic noise of about 110 eV r.m.s., it opens new perspectives for many synchrotron applications where currently the detector is the limiting factor, e.g. inelastic X-ray scattering, Laue diffraction and soft X-ray or high-resolution color imaging. Due to the small pixel pitch, the charge cloud generated by absorbed X-rays is shared between neighboring pixels for most of the photons. Therefore, at low photon fluxes, interpolation algorithms can be applied to determine the absorption position of each photon with a resolution of the order of 1 µm. In this work, the characterization results of one of the MÖNCH prototypes are presented under low-flux conditions. A custom interpolation algorithm is described and applied to the data to obtain high-resolution images. Images obtained in grating interferometry experiments without the use of the absorption grating G2 are shown and discussed. Perspectives for the future developments of the MÖNCH detector are also presented.

13.
J Synchrotron Radiat ; 23(1): 111-7, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26698052

RESUMO

With the increased brilliance of state-of-the-art synchrotron radiation sources and the advent of free-electron lasers (FELs) enabling revolutionary science with EUV to X-ray photons comes an urgent need for suitable photon imaging detectors. Requirements include high frame rates, very large dynamic range, single-photon sensitivity with low probability of false positives and (multi)-megapixels. At DESY, one ongoing development project - in collaboration with RAL/STFC, Elettra Sincrotrone Trieste, Diamond, and Pohang Accelerator Laboratory - is the CMOS-based soft X-ray imager PERCIVAL. PERCIVAL is a monolithic active-pixel sensor back-thinned to access its primary energy range of 250 eV to 1 keV with target efficiencies above 90%. According to preliminary specifications, the roughly 10 cm × 10 cm, 3.5k × 3.7k monolithic sensor will operate at frame rates up to 120 Hz (commensurate with most FELs) and use multiple gains within 27 µm pixels to measure 1 to ∼100000 (500 eV) simultaneously arriving photons. DESY is also leading the development of the AGIPD, a high-speed detector based on hybrid pixel technology intended for use at the European XFEL. This system is being developed in collaboration with PSI, University of Hamburg, and University of Bonn. The AGIPD allows single-pulse imaging at 4.5 MHz frame rate into a 352-frame buffer, with a dynamic range allowing single-photon detection and detection of more than 10000 photons at 12.4 keV in the same image. Modules of 65k pixels each are configured to make up (multi)megapixel cameras. This review describes the AGIPD and the PERCIVAL concepts and systems, including some recent results and a summary of their current status. It also gives a short overview over other FEL-relevant developments where the Photon Science Detector Group at DESY is involved.

14.
J Synchrotron Radiat ; 21(Pt 5): 1006-10, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25177989

RESUMO

Dramatic advances in synchrotron radiation sources produce ever-brighter beams of X-rays, but those advances can only be used if there is a corresponding improvement in X-ray detectors. With the advent of storage ring sources capable of being diffraction-limited (down to a certain wavelength), advances in detector speed, dynamic range and functionality is required. While many of these improvements in detector capabilities are being pursued now, the orders-of-magnitude increases in brightness of diffraction-limited storage ring sources will require challenging non-incremental advances in detectors. This article summarizes the current state of the art, developments underway worldwide, and challenges that diffraction-limited storage ring sources present for detectors.

15.
J Synchrotron Radiat ; 18(Pt 6): 923-9, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21997919

RESUMO

The MYTHEN single-photon-counting (SPC) detector has been characterized using the time-over-threshold (ToT) readout method, i.e. measuring the time that the signal produced by the detected X-rays remains above the comparator threshold. In the following it is shown that the ToT readout preserves the sensitivity, dynamic range and capability of background suppression of the SPC mode, while enhancing the count-rate capability, which is the main limitation of state-of-the-art SPC systems.

16.
J Synchrotron Radiat ; 17(5): 653-68, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20724787

RESUMO

The MYTHEN single-photon-counting silicon microstrip detector has been developed at the Swiss Light Source for time-resolved powder diffraction experiments. An upgraded version of the detector has been installed at the SLS powder diffraction station allowing the acquisition of diffraction patterns over 120 degrees in 2theta in fractions of seconds. Thanks to the outstanding performance of the detector and to the calibration procedures developed, the quality of the data obtained is now comparable with that of traditional high-resolution point detectors in terms of FWHM resolution and peak profile shape, with the additional advantage of fast and simultaneous acquisition of the full diffraction pattern. MYTHEN is therefore optimal for time-resolved or dose-critical measurements. The characteristics of the MYTHEN detector together with the calibration procedures implemented for the optimization of the data are described in detail. The refinements of two known standard powders are discussed together with a remarkable application of MYTHEN to organic compounds in relation to the problem of radiation damage.


Assuntos
Difração de Pó/instrumentação , Difração de Raios X/instrumentação , Bupivacaína/química , Difração de Pó/métodos , Síncrotrons/instrumentação , Difração de Raios X/métodos
17.
Nano Lett ; 9(3): 1158-63, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19193021

RESUMO

The evolution of the grain structure, internal strain, and the lattice misorientations of nanoporous gold during dealloying of bulk (3D) Ag-Au alloy samples was studied by various in situ and ex situ X-ray diffraction techniques including powder and Laue diffraction. The experiments reveal that the dealloying process preserves the original crystallographic structure but leads to a small spread in orientations within individual grains. Initially, most grains develop in-plane tensile stresses, which are partly released during further dealloying. Simultaneously, the feature size of the developing nanoporous structure increases with increasing dealloying time. Finally, microdiffraction experiments on dealloyed micron-sized nanoporous pillars reveal significant surface damage introduced by focused ion beam milling.

18.
Acta Crystallogr A ; 63(Pt 4): 306-14, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17570893

RESUMO

A technique has been developed that allows determination of the concentration profiles of colloidal solutions or any kind of fluid under confinement. Currently, submicrometre-wide channels are sampled with a resolution in the 10 nm range. The method comprises regular arrays of microfluidic channels and one-dimensional X-ray phase-retrieval techniques for the analysis of small-angle X-ray diffraction from the array structures. Recording the X-ray diffraction data requires a low dose on each individual channel since the sum of the signals from all channels is detected. The determined concentration profiles represent the ensemble average rather than individual entities and are obtained in a model-independent way. As an example, amplitude and phase of the exit field and concentration profiles for a colloidal fluid within confining channels of different widths are shown.


Assuntos
Microfluídica/métodos , Difração de Raios X/métodos , Coloides/química , Soluções/química
19.
Phys Rev E Stat Nonlin Soft Matter Phys ; 75(2 Pt 1): 021501, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17358342

RESUMO

Using synchrotron x-ray diffraction, we have determined the ensemble-averaged density profile of colloidal fluids within confining channels of different widths. We observe an oscillatory ordering-disordering behavior of the colloidal particles as a function of the channel width, while the colloidal solution remains in the liquid state. This phenomenon has been suggested by surface force studies of hard-sphere fluids and also theoretically predicted, but here we see it by direct measurements of the structure for comparable systems.

20.
Science ; 304(5668): 273-6, 2004 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-15073373

RESUMO

Plastic deformation in coarse-grained metals is governed by dislocation-mediated processes. These processes lead to the accumulation of a residual dislocation network, producing inhomogeneous strain and an irreversible broadening of the Bragg peaks in x-ray diffraction. We show that during plastic deformation of electrodeposited nanocrystalline nickel, the peak broadening is reversible upon unloading; hence, the deformation process does not build up a residual dislocation network. The results were obtained during in situ peak profile analysis using the Swiss Light Source. This in situ technique, based on well-known peak profile analysis methods, can be used to address the relationship between microstructure and mechanical properties in nanostructured materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...