Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biometeorol ; 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38679662

RESUMO

Little has been studied about microclimate and the thermal comfort during the implementation of silvopastoral systems. This study aimed to evaluate the microclimate and thermal comfort during the implementation of High Biodiversity Silvopastoral System with Nuclei (SPSnu). Three treatments were investigated, SPSnu with 5 and 10% of the pasture area with nuclei, (SPSnu5 and SPSnu10, respectively), and treeless pasture (TLP). Each treatment was subdivided into 4 areas: within the nuclei, around the nuclei, around the nuclei with shade and internuclei. The analyzed variables were soil surface temperature, air temperature, wind speed, relative humidity, black globe temperature and the Heat Load Index (HLI) at 20 and 120 cm height. We hypothesized that the wind speed reduction associated with insufficient shade projection typical of the first years of SPSs may interfere in microclimate and thermal comfort during the hot seasons. SPSnu5 and SPSnu10 had a reduction in wind speed of 51.58% and 68.47% respectively when compared to TLP at 20 cm. Soil surface temperature and air temperature at 120 cm were higher for SPSnu than TLP. The same effect was observed for the HLI. At 20 cm, HLI indicated better thermal comfort in TLP than in the SPSnu treatments. The lack of shade projection from young nuclei in conjunction with the decrease of wind speed between the nuclei caused a higher air temperature and HLI in the SPSnu treatments, we called this conditions, windbreak countereffect. Farmers must knowledge this effect when implementing SPSs, and when necessary, mitigate with the proper management decisions.

2.
Int J Biometeorol ; 67(7): 1199-1212, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37278864

RESUMO

This study aimed to assess the influence of the high biodiversity silvopastoral system (SPSnu) on the microclimate, pasture production, and pasture chemical composition. Microclimate variables and pasture production and chemical composition were measured in pared paddocks under SPSnu and treeless pasture (TLP) in a commercial farm during four seasons in Southern Brazil. SPSnu measurements were subdivided into two areas: around the nuclei (AN) and area inter-nuclei (IN). In the TLP paddocks, we plotted fictitious nuclei with the same areas and distributions of SPSnu, however without trees. For the microclimate measurements, these areas were noted when shaded or unshaded by the nuclei trees. In each season, the microclimate variables air temperature (AT, °C), relative humidity (RH, %), illuminance (Ilu, lux), wind speed (WS, m/s), and soil surface temperature (SST, °C) were measured. In addition, botanical composition (%), pasture production (kg/DM/ ha), and pasture chemical composition were evaluated. The SPSnu provided the lowest values of microclimate variables in all seasons (p < 0.05), except for the relative humidity. Winter had the highest thermal amplitude in the systems. The highest difference between SPSnu and TLP for AT (4.3 °C) and SST (5.2 °C) was measured during the hot seasons (spring and summer). In contrast, during cold seasons (autumn and winter) it observed highest thermal amplitude between SPSnu and TLP. Overall, the highest annual pasture production was observed in the SPSnu (p < 0.05). During the summer, the SPSnu areas showed the highest values of crude protein and dry matter (p < 0.05). During the winter, the TLP showed the lowest values (p < 0.05) of pasture production and dry matter. It was observed that SPSnu improved the microclimate at the pasture level, influencing pasture production and pasture chemical composition. The enhanced microclimate can partially mitigate some of the effects of climate change on pastoral agroecosystems, creating conditions for ecological rehabilitation of ecosystem processes and services. These conditions could be amplified to a biome level through a payment for ecosystem services program.


Assuntos
Ecossistema , Microclima , Temperatura , Temperatura Baixa , Árvores , Biodiversidade , Estações do Ano , Umidade
3.
Int J Biometeorol ; 64(11): 1877-1887, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32737583

RESUMO

The aim of this study was to evaluate the influence of microclimate on dairy cows' behaviors and their preferences for different pasture areas under high biodiversity silvopastoral system (SPSnuclei) in a subtropical climate. We surveyed three different pasture areas under SPSnuclei: shaded area around the nuclei (SAN), unshaded area around the nuclei (UAN), and all-day sunny area distant from the nuclei (SDN). In each area, the microclimatic variables were measured-air temperature (°C), relative humidity (%), illuminance (lux), wind speed (m/s), and soil surface temperature (°C). In addition, the diurnal behaviors of 39 Jersey dairy cows were evaluated. Grazing, standing rest, lying rest, standing rumination, and lying rumination were registered by scans every 10 min; drinking water was observed continuously. Microclimate differed (p < 0.05) among the SPSnuclei areas. Areas around the nuclei provided better conditions of air temperature (SAN, 31.05 °C; UAN, 31.92 °C; SDN, 33.39 °C), illuminance (SAN, 5665 lx; UAN, 61,065 lx; SDN, 75,380 lx), and soil surface temperature (SAN, 27.35 °C; UAN, 32.38 °C; SDN, 35.87 °C). The frequency of use of each SPSnuclei area by dairy cows was different (p < 0.01); the highest frequencies of the grazing (SAN, 12.6%; UAN, 4.8%; SDN, 11.1%), rumination (SAN, 21.7%; UAN, 3.1%; SDN, 1.9%), and rest (SAN, 35.6%; UAN, 5.4%; SDN, 3.7%) were registered in the areas around the nuclei. The microclimate of the high biodiversity silvopastoral system leads the animals to perform grazing, ruminating, and resting preferentially on the areas around the nuclei even with no shade.


Assuntos
Biodiversidade , Microclima , Animais , Comportamento Animal , Brasil , Bovinos , Feminino , Umidade , Lactação , Temperatura
4.
Int J Biometeorol ; 63(1): 83-92, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30456653

RESUMO

The aim of this work was to evaluate the influence of high biodiversity silvopastoral system (SPSnuclei) on microclimate and thermal comfort index thru a parallel with treeless pasture (TLP) during the four seasons of the year. Three conditions were determined for this study: shadowing area in SPSnuclei, sunny area in SPSnuclei, and sunny area in TLP. During two consecutive days in each season, the following microclimatic variables were collected: air temperature (°C), relative humidity (%), illuminance (lux), wind speed (m/s), and soil surface temperature (°C). The temperature and humidity index (THI) was calculated for each condition as indicative of thermal comfort. An influence analysis was carried out by generalized linear models to evaluate the system effects on the microclimatic variables. A confirmatory analysis was done with Wilcoxon-Mann-Whitney. Systems (SPSnuclei x TLP) influenced the microclimatic variables and THI (p < 0.05). The lowest means of air temperature, illuminance, wind speed, and soil surface temperature were found in SPSnuclei. As expected, autumn and winter presented a comfortable environment even on treeless pastureland. Only the SPSnuclei showed a comfortable environment for dairy production during spring. During summer, the TLP had a microclimate and thermal comfort index not suitable for dairy production already in the first hours of the day (THI between 79 and 85). We concluded that SPSnuclei provided better environment for pasture-based dairy production when compared to TLP. The high THI measured in TLP during summer could be a limiting factor on animal production.


Assuntos
Biodiversidade , Indústria de Laticínios , Fazendas , Microclima , Temperatura , Animais , Brasil , Bovinos , Umidade , Estações do Ano , Sensação Térmica , Vento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...