Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38798656

RESUMO

The Type-IX secretion system (T9SS) is a nanomachinery utilized by bacterial pathogens to facilitate infection. The system is regulated by a signaling cascade serving as its activation switch. A pivotal member in this cascade, the response regulator protein PorX, represents a promising drug target to prevent the secretion of virulence factors. Here, we provide a comprehensive characterization of PorX both in vitro and in vivo . First, our structural studies revealed PorX harbours a unique enzymatic effector domain, which, surprisingly, shares structural similarities with the alkaline phosphatase superfamily, involved in nucleotide and lipid signaling pathways. Importantly, such pathways have not been associated with the T9SS until now. Enzymatic characterization of PorX's effector domain revealed a zinc-dependent phosphodiesterase activity, with active site dimensions suitable to accommodate a large substrate. Unlike typical response regulators that dimerize via their receiver domain upon phosphorylation, we found that zinc can also induce conformational changes and promote PorX's dimerization via an unexpected interface. These findings suggest that PorX can serve as a cellular zinc sensor, broadening our understanding of its regulatory mechanisms. Despite the strict conservation of PorX in T9SS-utilizing bacteria, we demonstrate that PorX is essential for virulence factors secretion in Porphyromonas gingivalis and affects metabolic enzymes secretion in the non-pathogenic Flavobacterium johnsoniae , but not for the secretion of gliding adhesins. Overall, this study advances our structural and functional understanding of PorX, highlighting its potential as a druggable target for intervention strategies aimed at disrupting the T9SS and mitigating virulence in pathogenic species.

2.
Nucleic Acids Res ; 50(21): 12558-12577, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36464236

RESUMO

The PglZ family of proteins belongs to the alkaline phosphatase superfamily, which consists of metallohydrolases with limited sequence identity but similar metal-coordination architectures in otherwise divergent active sites. Proteins with a well-defined PglZ domain are ubiquitous among prokaryotes as essential components of BREX phage defence systems and two-component systems (TCSs). Whereas other members of the alkaline phosphatase superfamily are well characterized, the activity, structure and biological function of PglZ family proteins remain unclear. We therefore investigated the structure and function of PorX, an orphan response regulator of the Porphyromonas gingivalis TCS containing a putative PglZ effector domain. The crystal structure of PorX revealed a canonical receiver domain, a helical bundle, and an unprecedented PglZ domain, similar to the general organization of the phylogenetically related BREX-PglZ proteins. The PglZ domain of PorX features an active site cleft suitable for large substrates. An extensive search for substrates revealed that PorX is a phosphodiesterase that acts on cyclic and linear oligonucleotides, including signalling molecules such as cyclic oligoadenylates. These results, combined with mutagenesis, biophysical and enzymatic analysis, suggest that PorX coordinates oligonucleotide signalling pathways and indirectly regulates gene expression to control the secretion of virulence factors.


Assuntos
Proteínas de Bactérias , Fatores de Virulência , Fatores de Virulência/genética , Proteínas de Bactérias/metabolismo , Oligonucleotídeos , Fosfatase Alcalina , Expressão Gênica
3.
Cell Rep ; 27(1): 40-47.e5, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30943413

RESUMO

The aminoacylation of tRNAs by aminoacyl-tRNA synthetases (ARSs) is a central reaction in biology. Multiple regulatory pathways use the aminoacylation status of cytosolic tRNAs to monitor and regulate metabolism. The existence of equivalent regulatory networks within the mitochondria is unknown. Here, we describe a functional network that couples protein synthesis to DNA replication in animal mitochondria. We show that a duplication of the gene coding for mitochondrial seryl-tRNA synthetase (SerRS2) generated in arthropods a paralog protein (SLIMP) that forms a heterodimeric complex with a SerRS2 monomer. This seryl-tRNA synthetase variant is essential for protein synthesis and mitochondrial respiration. In addition, SLIMP interacts with the substrate binding domain of the mitochondrial protease LON, thus stimulating proteolysis of the DNA-binding protein TFAM and preventing mitochondrial DNA (mtDNA) accumulation. Thus, mitochondrial translation is directly coupled to mtDNA levels by a network based upon a profound structural modification of an animal ARS.


Assuntos
DNA Mitocondrial/metabolismo , Proteínas de Drosophila/fisiologia , Proteínas Mitocondriais/biossíntese , Biossíntese de Proteínas/fisiologia , Serina-tRNA Ligase/fisiologia , Aminoacil-tRNA Sintetases/genética , Aminoacil-tRNA Sintetases/fisiologia , Animais , Células Cultivadas , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster , Duplicação Gênica , Subunidades Proteicas/genética , Subunidades Proteicas/fisiologia , Serina-tRNA Ligase/química , Serina-tRNA Ligase/genética
4.
Nucleic Acids Res ; 43(8): 4284-95, 2015 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-25824949

RESUMO

The mitochondrial replicative helicase Twinkle is involved in strand separation at the replication fork of mitochondrial DNA (mtDNA). Twinkle malfunction is associated with rare diseases that include late onset mitochondrial myopathies, neuromuscular disorders and fatal infantile mtDNA depletion syndrome. We examined its 3D structure by electron microscopy (EM) and small angle X-ray scattering (SAXS) and built the corresponding atomic models, which gave insight into the first molecular architecture of a full-length SF4 helicase that includes an N-terminal zinc-binding domain (ZBD), an intermediate RNA polymerase domain (RPD) and a RecA-like hexamerization C-terminal domain (CTD). The EM model of Twinkle reveals a hexameric two-layered ring comprising the ZBDs and RPDs in one layer and the CTDs in another. In the hexamer, contacts in trans with adjacent subunits occur between ZBDs and RPDs, and between RPDs and CTDs. The ZBDs show important structural heterogeneity. In solution, the scattering data are compatible with a mixture of extended hexa- and heptameric models in variable conformations. Overall, our structural data show a complex network of dynamic interactions that reconciles with the structural flexibility required for helicase activity.


Assuntos
DNA Helicases/química , DNA Helicases/ultraestrutura , Proteínas Mitocondriais/química , Proteínas Mitocondriais/ultraestrutura , DNA Helicases/metabolismo , Humanos , Proteínas Mitocondriais/metabolismo , Modelos Moleculares , Multimerização Proteica , Estrutura Terciária de Proteína , Espalhamento a Baixo Ângulo , Homologia Estrutural de Proteína , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...