Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pest Manag Sci ; 77(4): 1572-1577, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33284501

RESUMO

Chemical weed control has been widely adopted and has led to increased efficiency and reduced crop production costs. With the increased use of herbicides and the introduction of herbicide-tolerant crops we have also seen an increase in herbicide resistant weeds which presents a challenge for farmers and land managers. It is incumbent upon the agriculture industry to be an indispensable partner in leading policy, research, education, and best management practices related to herbicide resistance. Corteva Agriscience is an active, engaged partner in herbicide resistance research, education, and communication globally to enable the long-term sustainable use of herbicide-tolerant crop traits and herbicides. Some of the key components of our commitment are highlighted in this Perspective paper and include memberships, partnerships, close involvement with CropLife International (and regional CropLife organizations), and Herbicide Resistance Action Committees at the Global, regional and country level, technical leadership and engagement in multiple scientific societies, and collaboration with universities and research institutes. Corteva is committed to advancing sustainable agriculture to enrich lives and our planet for generations to come and this drives our action through the entire product lifecycle and with our customers and consumers.


Assuntos
Resistência a Herbicidas , Herbicidas , Produtos Agrícolas/genética , Resistência a Herbicidas/genética , Herbicidas/farmacologia , Plantas Daninhas/genética , Controle de Plantas Daninhas
2.
Pest Manag Sci ; 74(1): 9-16, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28675627

RESUMO

Fifty years separate the commercialization of the herbicides trifluralin and halauxifen-methyl. Despite the vast degree of technological change that occurred over that time frame, some aspects of their discovery stories are remarkably similar. For example, both herbicides were prepared very early in the iterative discovery process and both were developed from known lead compound structures by hypothesis-driven research efforts without the use of in vitro assays or computer-aided molecular design. However, there are aspects of the halauxifen-methyl and trifluralin discovery stories that are substantially different. For example, the chemical technology required for the cost-effective production of halauxifen-methyl simply did not exist just two decades prior to its commercial launch. By contrast, the chemical technology required for the cost-effective production of trifluralin was reported in the chemical literature more than two decades prior to its commercial launch. In addition, changes in regulatory environment since the early 1960s ensured that their respective discovery to commercial launch stories would also differ in substantial ways. Ultimately, the time and cost required to develop and register halauxifen-methyl demanded a global initial business case while the lower registration hurdles that trifluralin cleared enabled a narrow initial business case mainly focused on the USA. © 2017 Society of Chemical Industry.


Assuntos
Herbicidas/história , Trifluralina/história , Herbicidas/química , Herbicidas/farmacologia , História do Século XX , História do Século XXI , Trifluralina/química , Trifluralina/farmacologia
3.
Bioorg Med Chem ; 24(3): 362-71, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26321602

RESUMO

Multiple classes of commercially important auxin herbicides have been discovered since the 1940s including the aryloxyacetates (2,4-D, MCPA, dichlorprop, mecoprop, triclopyr, and fluroxypyr), the benzoates (dicamba), the quinoline-2-carboxylates (quinclorac and quinmerac), the pyrimidine-4-carboxylates (aminocyclopyrachlor), and the pyridine-2-carboxylates (picloram, clopyralid, and aminopyralid). In the last 10 years, two novel pyridine-2-carboxylate (or picolinate) herbicides were discovered at Dow AgroSciences. This paper will describe the structure activity relationship study that led to the discovery of the 6-aryl-picolinate herbicides Arylex™ active (2005) and Rinskor™ active (2010). While Arylex was developed primarily for use in cereal crops and Rinskor is still in development primarily for use in rice crops, both herbicides will also be utilized in additional crops.


Assuntos
Descoberta de Drogas , Grão Comestível/efeitos dos fármacos , Herbicidas/farmacologia , Ácidos Indolacéticos/farmacologia , Oryza/efeitos dos fármacos , Picloram/análogos & derivados , Herbicidas/síntese química , Herbicidas/química , Ácidos Indolacéticos/síntese química , Ácidos Indolacéticos/química , Picloram/síntese química , Picloram/química , Picloram/farmacologia , Relação Estrutura-Atividade
4.
J Chem Ecol ; 39(2): 253-61, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23314893

RESUMO

A multiyear effort to identify new natural products was built on a hypothesis that both phytotoxins from plant pathogens and antimicrobial compounds might demonstrate herbicidal activity. The discovery of one such compound, mevalocidin, is described in the current report. Mevalocidin was discovered from static cultures of two unrelated fungal isolates designated Rosellinia DA092917 and Fusarium DA056446. The chemical structure was confirmed by independent synthesis. Mevalocidin demonstrated broad spectrum post-emergence activity on grasses and broadleaves and produced a unique set of visual symptoms on treated plants suggesting a novel mode of action. Mevalocidin was rapidly absorbed in a representative grass and broadleaf plant. Translocation occurred from the treated leaf to other plant parts including roots confirming phloem as well as xylem mobility. By 24 hr after application, over 20 % had been redistributed through-out the plant. Mevalocidin is a unique phytotoxin based on its chemistry, with the uncommon attribute of demonstrating both xylem and phloem mobility in grass and broadleaf plants.


Assuntos
Ascomicetos/química , Produtos Biológicos/química , Ácidos Carboxílicos/química , Fusarium/química , Herbicidas/química , Fenômenos Fisiológicos Vegetais , Produtos Biológicos/isolamento & purificação , Produtos Biológicos/metabolismo , Transporte Biológico , Ácidos Carboxílicos/isolamento & purificação , Ácidos Carboxílicos/metabolismo , Herbicidas/isolamento & purificação , Herbicidas/metabolismo , Floema/metabolismo , Xilema/metabolismo
5.
Plant Physiol ; 144(3): 1292-304, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17616508

RESUMO

A novel phenyltriazole acetic acid compound (DAS734) produced bleaching of new growth on a variety of dicotyledonous weeds and was a potent inhibitor of Arabidopsis (Arabidopsis thaliana) seedling growth. The phytotoxic effects of DAS734 on Arabidopsis were completely alleviated by addition of adenine to the growth media. A screen of ethylmethanesulfonate-mutagenized Arabidopsis seedlings recovered seven lines with resistance levels to DAS734 ranging from 5- to 125-fold. Genetic tests determined that all the resistance mutations were dominant and allelic. One mutation was mapped to an interval on chromosome 4 containing At4g34740, which encodes an isoform of glutamine phosphoribosylamidotransferase (AtGPRAT2), the first enzyme of the purine biosynthetic pathway. Sequencing of At4g34740 from the resistant lines showed that all seven contained mutations producing changes in the encoded polypeptide sequence. Two lines with the highest level of resistance (125-fold) contained the mutation R264K. The wild-type and mutant AtGPRAT2 enzymes were cloned and functionally overexpressed in Escherichia coli. Assays of the recombinant enzyme showed that DAS734 was a potent, slow-binding inhibitor of the wild-type enzyme (I(50) approximately 0.2 microm), whereas the mutant enzyme R264K was not significantly inhibited by 200 microm DAS734. Another GPRAT isoform in Arabidopsis, AtGPRAT3, was also inhibited by DAS734. This combination of chemical, genetic, and biochemical evidence indicates that the phytotoxicity of DAS734 arises from direct inhibition of GPRAT and establishes its utility as a new and specific chemical genetic probe of plant purine biosynthesis. The effects of this novel GPRAT inhibitor are compared to the phenotypes of known AtGPRAT genetic mutants.


Assuntos
Acetatos/farmacologia , Amidofosforribosiltransferase/antagonistas & inibidores , Arabidopsis/efeitos dos fármacos , Herbicidas/farmacologia , Triazóis/farmacologia , Sítio Alostérico , Amidofosforribosiltransferase/genética , Sequência de Aminoácidos , Arabidopsis/enzimologia , Arabidopsis/genética , Mapeamento Cromossômico , Escherichia coli/genética , Resistência a Herbicidas/genética , Isoenzimas/antagonistas & inibidores , Dados de Sequência Molecular , Mutação , Fenótipo , Purinas/biossíntese , Transformação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...