Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 5337, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38914540

RESUMO

Neuromuscular control of bionic arms has constantly improved over the past years, however, restoration of sensation remains elusive. Previous approaches to reestablish sensory feedback include tactile, electrical, and peripheral nerve stimulation, however, they cannot recreate natural, intuitive sensations. Here, we establish an experimental biological sensorimotor interface and demonstrate its potential use in neuroprosthetics. We transfer a mixed nerve to a skeletal muscle combined with glabrous dermal skin transplantation, thus forming a bi-directional communication unit in a rat model. Morphological analyses indicate reinnervation of the skin, mechanoreceptors, NMJs, and muscle spindles. Furthermore, sequential retrograde labeling reveals specific sensory reinnervation at the level of the dorsal root ganglia. Electrophysiological recordings show reproducible afferent signals upon tactile stimulation and tendon manipulation. The results demonstrate the possibility of surgically creating an interface for both decoding efferent motor control, as well as encoding afferent tactile and proprioceptive feedback, and may indicate the way forward regarding clinical translation of biological communication pathways for neuroprosthetic applications.


Assuntos
Biônica , Músculo Esquelético , Animais , Ratos , Músculo Esquelético/inervação , Músculo Esquelético/fisiologia , Retroalimentação Sensorial/fisiologia , Propriocepção/fisiologia , Gânglios Espinais/fisiologia , Mecanorreceptores/fisiologia , Fusos Musculares/fisiologia , Masculino , Feminino , Tato/fisiologia , Pele/inervação
2.
Sci Adv ; 10(9): eadj3872, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38416828

RESUMO

Advances in robotics have outpaced the capabilities of man-machine interfaces to decipher and transfer neural information to and from prosthetic devices. We emulated clinical scenarios where high- (facial) or low-neural capacity (ulnar) donor nerves were surgically rewired to the sternomastoid muscle, which is controlled by a very small number of motor axons. Using retrograde tracing and electrophysiological assessments, we observed a nearly 15-fold functional hyper-reinnervation of the muscle after high-capacity nerve transfer, demonstrating its capability of generating a multifold of neuromuscular junctions. Moreover, the surgically redirected axons influenced the muscle's physiological characteristics, by altering the expression of myosin heavy-chain types in alignment with the donor nerve. These findings highlight the remarkable capacity of skeletal muscles to act as biological amplifiers of neural information from the spinal cord for governing bionic prostheses, with the potential of expressing high-dimensional neural function for high-information transfer interfaces.


Assuntos
Neurônios Motores , Regeneração Nervosa , Humanos , Neurônios Motores/fisiologia , Regeneração Nervosa/fisiologia , Músculo Esquelético , Nervos Periféricos , Axônios/fisiologia
3.
J Adv Res ; 44: 135-147, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36725185

RESUMO

INTRODUCTION: Neuromuscular control of the facial expressions is provided exclusively via the facial nerve. Facial muscles are amongst the most finely tuned effectors in the human motor system, which coordinate facial expressions. In lower vertebrates, the extracranial facial nerve is a mixed nerve, while in mammals it is believed to be a pure motor nerve. However, this established notion does not agree with several clinical signs in health and disease. OBJECTIVES: To elucidate the facial nerve contribution to the facial muscles by investigating axonal composition of the human facial nerve. To reveal new innervation pathways of other axon types of the motor facial nerve. METHODS: Different axon types were distinguished using specific molecular markers (NF, ChAT, CGRP and TH). To elucidate the functional role of axon types of the facial nerve, we used selective elimination of other neuronal support from the trigeminal nerve. We used retrograde neuronal tracing, three-dimensional imaging of the facial muscles, and high-fidelity neurophysiological tests in animal model. RESULTS: The human facial nerve revealed a mixed population of only 85% motor axons. Rodent samples revealed a fiber composition of motor, afferents and, surprisingly, sympathetic axons. We confirmed the axon types by tracing the originating neurons in the CNS. The sympathetic fibers of the facial nerve terminated in facial muscles suggesting autonomic innervation. The afferent fibers originated in the facial skin, confirming the afferent signal conduction via the facial nerve. CONCLUSION: These findings reveal new innervation pathways via the facial nerve, support the sympathetic etiology of hemifacial spasm and elucidate clinical phenomena in facial nerve regeneration.


Assuntos
Nervo Facial , Espasmo Hemifacial , Animais , Humanos , Axônios/fisiologia , Músculos Faciais , Nervo Facial/fisiologia , Vias Neurais , Roedores
4.
FASEB J ; 37(1): e22686, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36468768

RESUMO

We present the time course of change in the muscle transcriptome 1 h after the last exercise bout of a daily resistance training program lasting 2, 10, 20, or 30 days. Daily exercise in rat tibialis anterior muscles (5 sets of 10 repetitions over 20 min) induced progressive muscle growth that approached a new stable state after 30 days. The acute transcriptional response changed along with progressive adaptation of the muscle phenotype. For example, expression of type 2B myosin was silenced. Time courses recently synthesized from human exercise studies do not demonstrate so clearly the interplay between the acute exercise response and the longer-term consequences of repeated exercise. We highlight classes of transcripts and transcription factors whose expression increases during the growth phase and declines again as the muscle adapts to a new daily pattern of activity and reduces its rate of growth. Myc appears to play a central role.


Assuntos
Condicionamento Físico Humano , Treinamento Resistido , Humanos , Animais , Ratos , Aclimatação , Músculos , Fenótipo
5.
J Neurosci ; 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36216502

RESUMO

The surgical redirection of efferent neural input to a denervated muscle via a nerve transfer can reestablish neuromuscular control after nerve injuries. The role of autonomic nerve fibers during the process of muscular reinnervation remains largely unknown. Here, we investigated the neurobiological mechanisms behind the spontaneous functional recovery of denervated facial muscles in male rodents. Recovered facial muscles demonstrated an abundance of cholinergic axonal endings establishing functional neuromuscular junctions. The parasympathetic source of the neuronal input was confirmed to be in the pterygopalatine ganglion. Furthermore, the autonomically reinnervated facial muscles underwent a muscle fiber change to a purely intermediate muscle fiber population (MHCIIa). Finally, electrophysiological tests revealed that the postganglionic parasympathetic fibers travel to the facial muscles via the sensory infraorbital nerve. Our findings demonstrated expanded neuromuscular plasticity of denervated striated muscles enabling functional recovery via alien autonomic fibers. These findings may further explain the underlying mechanisms of sensory protection implemented to prevent atrophy of a denervated muscle.SIGNIFICANCE STATEMENT:Nerve injuries represent significant morbidity and disability for patients. Rewiring motor nerve fibers to other target muscles have shown to be a successful approach in the restoration of motor function. This demonstrates the remarkable capacity of the central nervous system to adapt to the needs of the neuromuscular system. Yet, the capability of skeletal muscles being reinnervated by non-motor axons remains largely unknown. Here, we show that under deprivation of original efferent input, the neuromuscular system can undergo functional and morphological remodeling via autonomic nerve fibers. This may explain neurobiological mechanisms of the sensory protection phenomenon, which is due to parasympathetic reinnervation.

6.
J Neuroeng Rehabil ; 19(1): 39, 2022 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-35422040

RESUMO

BACKGROUND: FES-Cycling is an exciting recreational activity, which allows certain individuals after spinal cord injury or stroke to exercise their paralyzed muscles. The key for a successful application is to activate the right muscles at the right time. METHODS: While a stimulation pattern is usually determined empirically, we propose an approach using the torque feedback provided by a commercially available crank power-meter installed on a standard trike modified for FES-Cycling. By analysing the difference between active (with stimulation) and passive (without stimulation) torques along a full pedalling cycle, it is possible to differentiate between contributing and resisting phases for a particular muscle group. In this article we present an algorithm for the detection of optimal stimulation intervals and demonstrate its functionality, bilaterally for the quadriceps and hamstring muscles, in one subject with complete SCI on a home trainer. Stimulation patterns were automatically determined for two sensor input modalities: the crank-angle and a normalized thigh-angle (i.e. cycling phase, measured via inertial measurement units). In contrast to previous studies detecting automatic stimulation intervals on motorised ergo-cycles, our approach does not rely on a constant angular velocity provided by a motor, thus being applicable to the domain of mobile FES-Cycling. RESULTS: The algorithm was successfully able to identify stimulation intervals, individually for the subject's left and right quadriceps and hamstring muscles. Smooth cycling was achieved without further adaptation, for both input signals (i.e. crank-angle and normalized thigh-angle). CONCLUSION: The automatic determination of stimulation patterns, on basis of the positive net-torque generated during electrical stimulation, can help to reduce the duration of the initial fitting phase and to improve the quality of pedalling during a FES-Cycling session. In contrast to previous works, the presented algorithm does not rely on a constant angular velocity and thus can be effectively implemented into mobile FES-Cycling systems. As each muscle or muscle group is assessed individually, our algorithm can be used to evaluate the efficiency of novel electrode configurations and thus could promote increased performances during FES-Cycling.


Assuntos
Terapia por Estimulação Elétrica , Traumatismos da Medula Espinal , Algoritmos , Ciclismo , Estimulação Elétrica , Humanos , Músculo Quadríceps
7.
J Cataract Refract Surg ; 48(5): 549-554, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-34533918

RESUMO

PURPOSE: To quantify intraoperative stress levels in cataract surgeons and investigate the relationship between intraoperative stress and surgeon experience. SETTING: Department of Ophthalmology, Hanusch Krankenhaus, Vienna, Austria. DESIGN: Prospective, observational case series. METHODS: 5 ophthalmologists with surgery experiences of 70 to 15 000 previous surgeries volunteered for this study. Surgeons' heart rate (HR) and heart rate variability (HRV) were measured during a total of 45 cataract surgeries. HR and HRV values were normalized to the minimal HR and maximal HRV of an overnight baseline measurement. The resulting normalized HR measure and HRV stress index are stress dependent and comparable between subjects. No case selection was performed. RESULTS: Less experienced surgeons showed higher HRV stress indices; differences between the surgeons with less than 180 and 500 surgeries and the 2 with 600 and 1500 surgeries, respectively, were statistically significant (α = 0.05). No statistically significant difference in stress indices was found between surgeons with 1500 and 15 000 surgeries, suggesting that there may be a plateau effect after 1500 surgeries. HRV stress indices and case times were negatively correlated with the logarithm of experience in the number of previously performed surgeries (r2 = 0.67 and 0.52). No significant stress buildup over multiple successive surgeries was found (α = 0.05). CONCLUSIONS: The new HRV stress index is a simple but powerful tool for quantifying intraoperative stress in cataract surgeons. Decreases in stress with increasing experience are congruent with previous works on general surgeons' stress and follow a similar timeline as previously published, proficiency-based learning curves for cataract surgery.


Assuntos
Extração de Catarata , Catarata , Oftalmologia , Cirurgiões , Catarata/complicações , Humanos , Estudos Prospectivos
8.
Am J Phys Med Rehabil ; 100(12): 1148-1151, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34596097

RESUMO

ABSTRACT: The purpose of this observational study was to report the experience of a 1-yr home training with functional electrical stimulation cycling of a person with T4 American Impairment Scale A paraplegia for 9 yrs, homebound due to the COVID-19 health crisis. The 40-yr-old participant had a three-phase training: V1, isometric stimulation; V2, functional electrical stimulation cycling for 3 sessions/wk; and V3, functional electrical stimulation cycling for 2-4 sessions/wk. Data on general and physical tolerance, health impact, and performance were collected. Borg Scale score relating to fatigue was 10.1 before training and 11.8 after training. The average score for satisfaction at the end of sessions was 8.7. Lean leg mass increased more than 29%, although total bone mineral density dropped by 1.6%. The ventilatory thresholds increased from 19.5 to 29% and the maximum ventilatory peak increased by 9.5%. Rosenberg's Self-esteem Scale score returned to its highest level by the end of training. For the only track event on a competition bike, the pilot covered a distance of 1607.8 m in 17 mins 49 secs. When functional electrical stimulation cycling training is based on a clear and structured protocol, it offers the person with paraplegia the opportunity to practice this activity recreationally and athletically. In times of crisis, this training has proven to be very relevant.


Assuntos
Ciclismo/fisiologia , Terapia por Estimulação Elétrica/métodos , Terapia por Exercício/métodos , Paraplegia/reabilitação , Telerreabilitação/métodos , Adulto , COVID-19/prevenção & controle , Estudos de Viabilidade , Humanos , Masculino , Paraplegia/fisiopatologia , SARS-CoV-2 , Estudos de Caso Único como Assunto , Resultado do Tratamento
9.
Sensors (Basel) ; 21(13)2021 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-34283104

RESUMO

Functional electrical stimulation (FES) is a technique used in rehabilitation, allowing the recreation or facilitation of a movement or function, by electrically inducing the activation of targeted muscles. FES during cycling often uses activation patterns which are based on the crank angle of the pedals. Dynamic changes in their underlying predefined geometrical models (e.g., change in seating position) can lead to desynchronised contractions. Adaptive algorithms with a real-time interpretation of anatomical segments can avoid this and open new possibilities for the automatic design of stimulation patterns. However, their ability to accurately and precisely detect stimulation triggering events has to be evaluated in order to ensure their adaptability to real-case applications in various conditions. In this study, three algorithms (Hilbert, BSgonio, and Gait Cycle Index (GCI) Observer) were evaluated on passive cycling inertial data of six participants with spinal cord injury (SCI). For standardised comparison, a linear phase reference baseline was used to define target events (i.e., 10%, 40%, 60%, and 90% of the cycle's progress). Limits of agreement (LoA) of ±10% of the cycle's duration and Lin's concordance correlation coefficient (CCC) were used to evaluate the accuracy and precision of the algorithm's event detections. The delays in the detection were determined for each algorithm over 780 events. Analysis showed that the Hilbert and BSgonio algorithms validated the selected criteria (LoA: +5.17/-6.34% and +2.25/-2.51%, respectively), while the GCI Observer did not (LoA: +8.59/-27.89%). When evaluating control algorithms, it is paramount to define appropriate criteria in the context of the targeted practical application. To this end, normalising delays in event detection to the cycle's duration enables the use of a criterion that stays invariable to changes in cadence. Lin's CCC, comparing both linear correlation and strength of agreement between methods, also provides a reliable way of confirming comparisons between new control methods and an existing reference.


Assuntos
Terapia por Estimulação Elétrica , Traumatismos da Medula Espinal , Algoritmos , Estimulação Elétrica , Marcha , Humanos
10.
J Neuroeng Rehabil ; 18(1): 11, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33478556

RESUMO

BACKGROUND: Rapid onset of muscular fatigue is still one of the main issues of functional electrical stimulation (FES). A promising technique, known as distributed stimulation, aims to activate sub-units of a muscle at a lower stimulation frequency to increase fatigue-resistance. Besides a general agreement on the beneficial effects, the great heterogeneity of evaluation techniques, raises the demand for a standardized method to better reflect the requirements of a practical application. METHODS: This study investigated the fatigue-development of 6 paralysed quadriceps muscles over the course of 180 dynamic contractions, evaluating different electrode-configurations (conventional and distributed stimulation). For a standardized comparison, fatigue-testing was performed at 40% of the peak-torque during a maximal evoked contraction (MEC). Further, we assessed the isometric torque for each electrode-configuration at different knee-extension-angles (70°-170°, 10° steps). RESULTS: Our results showed no significant difference in the fatigue-index for any of the tested electrode-configurations, compared to conventional-stimulation. We conjecture that the positive effects of distributed stimulation become less pronounced at higher stimulation amplitudes. The isometric torque produced at different knee-extension angles was similar for most electrode-configurations. Maximal torque-production was found at 130°-140° knee-extension-angle, which correlates with the maximal knee-flexion-angles during running. CONCLUSION: In most practical applications, FES is intended to initiate dynamic movements. Therefore, it is crucial to assess fatigue-resistance by using dynamic contractions. Reporting the relationship between produced torque and knee-extension-angle can help to observe the stability of a chosen electrode-configuration for a targeted range-of-motion. Additionally, we suggest to perform fatigue testing at higher forces (e.g. 40% of the maximal evoked torque) in pre-trained subjects with SCI to better reflect the practical demands of FES-applications.


Assuntos
Terapia por Estimulação Elétrica/métodos , Terapia por Estimulação Elétrica/normas , Fadiga Muscular/fisiologia , Paralisia/reabilitação , Traumatismos da Medula Espinal/reabilitação , Adulto , Eletrodos , Humanos , Contração Isométrica/fisiologia , Masculino , Paralisia/etiologia , Paralisia/fisiopatologia , Músculo Quadríceps/fisiopatologia , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/fisiopatologia
11.
PLoS One ; 15(10): e0241638, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33125415

RESUMO

According to PubMed, roughly 10% of the annually added publications are describing findings from the small animal model (mice and rats), including investigations in the field of muscle physiology and training. A subset of this research requires neural stimulation with flexible adjustments of stimulation parameters, highlighting the need for reliable implantable electrical stimulators, small enough (~1 cm3), that even mice can tolerate them without impairing their movement. The MiniVStimA is a battery-powered implant for nerve stimulation with an outer diameter of 15 mm and an encapsulated volume of 1.2 cm3 in its smallest variation. It can be pre-programmed according to the experimental protocol and controlled after implantation with a magnet. It delivers constant current charge-balanced monophasic rectangular pulses up to 2 mA and 1 ms phase width (1 kΩ load). The circuitry is optimized for small volume and energy efficiency. Due to the variation of the internal oscillator (31 kHz ± 10%), calibration measures must be implemented during the manufacturing process, which can reduce the deviation of the frequency related parameters down to ± 1%. The expected lifetime of the smaller (larger) version is 100 (480) days for stimulation with 7 Hz all day and 10 (48) days for stimulation with 100 Hz. Devices with complex stimulation patterns for nerve stimulation have been successfully used in two in-vivo studies, lasting up to nine weeks. The implant worked fully self-contained while the animal stayed in its familiar environment. External components are not required during the entire time.


Assuntos
Estimulação Elétrica/instrumentação , Eletrodos Implantados , Animais , Animais de Laboratório , Desenho de Equipamento , Feminino , Camundongos , Ratos , Ratos Wistar
12.
PLoS One ; 13(11): e0207886, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30458051

RESUMO

The influence of loading on muscular hypertrophy has previously been studied in rodents by removal of synergistic muscles or various weight-lifting regimes. We present a novel model, evoking hypertrophy in the rat's tibialis anterior (TA) muscle by means of an implanted single channel electrical nerve stimulator. The amount of load experienced by the TA was measured in acute experiments in anaesthetized rats with contractions over a range of stimulation frequency and amplitude. A novel electrode configuration allowed us to elicit concentric, isometric and eccentric contractions within the same setup. This was achieved by 'SpillOver' stimulation in which we adjusted the amount of co-activation of the stronger antagonistic plantarflexors by increasing the stimulus above the level that caused full recruitment of the dorsiflexor muscles. The effect of loading on hypertrophy of the TA was tested in 3-4 week stimulation experiments in two groups of freely-moving rats, with a protocol that resembles typical resistance-training in humans. One group performed concentric contractions with no antagonistic co-contraction (unloaded, UNL, n = 5). In the other group the TA was loaded by simultaneous co-contraction of the antagonistically acting plantarflexors (SpillOver, n = 5). The wet mass of the stimulated TA increased in both groups; by 5.4 ± 5.5% for the UNL-group and 13.9 ± 2.9% for the SpillOver-group, with significantly greater increase in the SpillOver-group (p<0.05). Our results correlate well with values reported in literature, demonstrating that SpillOver-stimulation is a suitable model in which to study muscular hypertrophy. Even higher gains in muscle-mass may be possible by optimizing and adjusting the stimulation parameters according to the principles of progressive resistance training.


Assuntos
Estimulação Elétrica , , Contração Muscular , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Tíbia , Animais , Fenômenos Biomecânicos , Modelos Animais de Doenças , Hipertrofia , Masculino , Tamanho do Órgão , Ratos , Ratos Wistar , Suporte de Carga
13.
PLoS One ; 12(9): e0185209, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28934327

RESUMO

Direct measurements of muscular forces usually require a substantial rearrangement of the biomechanical system. To circumvent this problem, various indirect techniques have been used in the past. We introduce a novel direct method, using a lightweight (~0.5 g) miniature (3 x 3 x 7 mm) in-line load-cell to measure tension in the tibialis anterior tendon of rats. A linear motor was used to produce force-profiles to assess linearity, step-response, hysteresis and frequency behavior under controlled conditions. Sensor responses to a series of rectangular force-pulses correlated linearly (R2 = 0.999) within the range of 0-20 N. The maximal relative error at full scale (20 N) was 0.07% of the average measured signal. The standard deviation of the mean response to repeated 20 N force pulses was ± 0.04% of the mean response. The step-response of the load-cell showed the behavior of a PD2T2-element in control-engineering terminology. The maximal hysteretic error was 5.4% of the full-scale signal. Sinusoidal signals were attenuated maximally (-4 dB) at 200 Hz, within a measured range of 0.01-200 Hz. When measuring muscular forces this should be of minor concern as the fusion-frequency of muscles is generally much lower. The newly developed load-cell measured tensile forces of up to 20 N, without inelastic deformation of the sensor. It qualifies for various applications in which it is of interest directly to measure forces within a particular tendon causing only minimal disturbance to the biomechanical system.


Assuntos
Teste de Materiais/instrumentação , Miniaturização/instrumentação , Tendões/fisiologia , Resistência à Tração , Tíbia , Animais , Fenômenos Biomecânicos , Masculino , Ratos , Ratos Wistar , Suporte de Carga
14.
Physiol Rep ; 5(8)2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28420761

RESUMO

Tensile-force transmitted by the tibialis anterior (TA) tendon of 11 anesthetized adult male Wistar rats (body-mass: 360.6 ± 66.3 g) was measured in-situ within the intact biomechanical system of the hind-limb using a novel miniature in-line load-cell. The aim was to demonstrate the dependence of the loading-profile experienced by the muscle, on stimulation-frequency and the resistance to shortening in a group of control-animals. Data from these acute-experiments shows the type of loading achievable by means of implantable electrical stimulators activating agonists or agonist/antagonist groups of muscles during programmed resistance-training in freely moving healthy subjects. Force-responses to electrical stimulation of the common peroneal nerve for single pulses and short bursts were measured in unloaded and isometric contractions. A less time-consuming approach to measure the force-frequency relationship was investigated by applying single bursts containing a series of escalating stimulus-frequencies. We also measured the range of loading attainable by programmed co-contraction of the TA-muscle with the plantar-flexor muscles for various combinations of stimulation-frequencies. The maximal average peak-force of single twitches was 179% higher for isometric than for unloaded twitches. Average maximal isometric tetanic-force per gramme muscle-mass was 16.5 ± 3.0 N g-1, which agrees well with other studies. The standard and time-saving approaches to measure the force-frequency relationship gave similar results. Plantar-flexor co-activation produced greatly increased tension in the TA-tendon, similar to isometric contractions. Our results suggest that unloaded contractions may not be adequate for studies of resistance-training. Plantar-flexor co-contractions produced considerably higher force-levels that may be better suited to investigate the physiology and cell-biology of resistance-training in rodents.


Assuntos
Contração Isométrica , Músculo Esquelético/fisiologia , Tendões/fisiologia , Resistência à Tração , Animais , Masculino , Músculo Esquelético/inervação , Condicionamento Físico Animal , Ratos , Ratos Wistar
16.
PLoS One ; 11(11): e0167367, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27893858

RESUMO

Age related atrophy of the laryngeal muscles -mainly the thyroarytenoid muscle (TAM)- leads to a glottal gap and consequently to a hoarse and dysphonic voice that significantly affects quality of life. The aim of our study was to reverse this atrophy by inducing muscular hypertrophy by unilateral functional electrical stimulation (FES) of the recurrent laryngeal nerve (RLN) in a large animal model using aged sheep (n = 5). Suitable stimulation parameters were determined by fatiguing experiments of the thyroarytenoid muscle in an acute trial. For the chronic trial an electrode was placed around the right RLN and stimulation was delivered once daily for 29 days. We chose a very conservative stimulation pattern, total stimulation time was two minutes per day, or 0.14% of total time. Overall, the mean muscle fiber diameter of the stimulated right TAM was significantly larger than the non-stimulated left TAM (30µm±1.1µm vs. 28µm±1.1 µm, p<0.001). There was no significant shift in fiber type distribution as judged by immunohistochemistry. The changes of fiber diameter could not be observed in the posterior cricoarytenoid muscle (PCAM). FES is a possible new treatment option for reversing the effects of age related laryngeal muscle atrophy.


Assuntos
Modelos Animais de Doenças , Terapia por Estimulação Elétrica/métodos , Músculos Laríngeos/patologia , Traumatismos do Nervo Laríngeo Recorrente/terapia , Nervo Laríngeo Recorrente/patologia , Paralisia das Pregas Vocais/fisiopatologia , Fatores Etários , Animais , Feminino , Qualidade de Vida , Ovinos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...