Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 597, 2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33500415

RESUMO

In strongly correlated systems the strength of Coulomb interactions between electrons, relative to their kinetic energy, plays a central role in determining their emergent quantum mechanical phases. We perform resonant x-ray scattering on Bi2Sr2CaCu2O8+δ, a prototypical cuprate superconductor, to probe electronic correlations within the CuO2 plane. We discover a dynamic quasi-circular pattern in the x-y scattering plane with a radius that matches the wave vector magnitude of the well-known static charge order. Along with doping- and temperature-dependent measurements, our experiments reveal a picture of charge order competing with superconductivity where short-range domains along x and y can dynamically rotate into any other in-plane direction. This quasi-circular spectrum, a hallmark of Brazovskii-type fluctuations, has immediate consequences to our understanding of rotational and translational symmetry breaking in the cuprates. We discuss how the combination of short- and long-range Coulomb interactions results in an effective non-monotonic potential that may determine the quasi-circular pattern.

2.
Nat Commun ; 10(1): 5209, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31729372

RESUMO

Establishing the presence and the nature of a quantum critical point in their phase diagram is a central enigma of the high-temperature superconducting cuprates. It could explain their pseudogap and strange metal phases, and ultimately their high superconducting temperatures. Yet, while solid evidences exist in several unconventional superconductors of ubiquitous critical fluctuations associated to a quantum critical point, in the cuprates they remain undetected until now. Here using symmetry-resolved electronic Raman scattering in the cuprate [Formula: see text], we report the observation of enhanced electronic nematic fluctuations near the endpoint of the pseudogap phase. While our data hint at the possible presence of an incipient nematic quantum critical point, the doping dependence of the nematic fluctuations deviates significantly from a canonical quantum critical scenario. The observed nematic instability rather appears to be tied to the presence of a van Hove singularity in the band structure.

3.
Sci Rep ; 8(1): 7666, 2018 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-29769638

RESUMO

SrxBi2Se3 and the related compounds CuxBi2Se3 and NbxBi2Se3 have attracted considerable interest, as these materials may be realizations of unconventional topological superconductors. Superconductivity with Tc ~3 K in SrxBi2Se3 arises upon intercalation of Sr into the layered topological insulator Bi2Se3. Here we elucidate the anisotropy of the normal and superconducting state of Sr0.1Bi2Se3 with angular dependent magnetotransport and thermodynamic measurements. High resolution x-ray diffraction studies underline the high crystalline quality of the samples. We demonstrate that the normal state electronic and magnetic properties of Sr0.1Bi2Se3 are isotropic in the basal plane while we observe a large two-fold in-plane anisotropy of the upper critical field in the superconducting state. Our results support the recently proposed odd-parity nematic state characterized by a nodal gap of Eu symmetry in SrxBi2Se3.

4.
Proc Natl Acad Sci U S A ; 115(21): 5392-5396, 2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29735712

RESUMO

A central mystery in high-temperature superconductivity is the origin of the so-called strange metal (i.e., the anomalous conductor from which superconductivity emerges at low temperature). Measuring the dynamic charge response of the copper oxides, [Formula: see text], would directly reveal the collective properties of the strange metal, but it has never been possible to measure this quantity with millielectronvolt resolution. Here, we present a measurement of [Formula: see text] for a cuprate, optimally doped Bi2.1Sr1.9CaCu2O8+x (Tc = 91 K), using momentum-resolved inelastic electron scattering. In the medium energy range 0.1-2 eV relevant to the strange metal, the spectra are dominated by a featureless, temperature- and momentum-independent continuum persisting to the electronvolt energy scale. This continuum displays a simple power-law form, exhibiting q2 behavior at low energy and q2/ω2 behavior at high energy. Measurements of an overdoped crystal (Tc = 50 K) showed the emergence of a gap-like feature at low temperature, indicating deviation from power law form outside the strange-metal regime. Our study suggests the strange metal exhibits a new type of charge dynamics in which excitations are local to such a degree that space and time axes are decoupled.

5.
Nat Mater ; 17(5): 416-420, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29610487

RESUMO

The possibility of driving phase transitions in low-density condensates through the loss of phase coherence alone has far-reaching implications for the study of quantum phases of matter. This has inspired the development of tools to control and explore the collective properties of condensate phases via phase fluctuations. Electrically gated oxide interfaces1,2, ultracold Fermi atoms3,4 and cuprate superconductors5,6, which are characterized by an intrinsically small phase stiffness, are paradigmatic examples where these tools are having a dramatic impact. Here we use light pulses shorter than the internal thermalization time to drive and probe the phase fragility of the Bi2Sr2CaCu2O8+δ cuprate superconductor, completely melting the superconducting condensate without affecting the pairing strength. The resulting ultrafast dynamics of phase fluctuations and charge excitations are captured and disentangled by time-resolved photoemission spectroscopy. This work demonstrates the dominant role of phase coherence in the superconductor-to-normal state phase transition and offers a benchmark for non-equilibrium spectroscopic investigations of the cuprate phase diagram.

6.
Nat Commun ; 7: 13761, 2016 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-27996009

RESUMO

In complex materials various interactions have important roles in determining electronic properties. Angle-resolved photoelectron spectroscopy (ARPES) is used to study these processes by resolving the complex single-particle self-energy and quantifying how quantum interactions modify bare electronic states. However, ambiguities in the measurement of the real part of the self-energy and an intrinsic inability to disentangle various contributions to the imaginary part of the self-energy can leave the implications of such measurements open to debate. Here we employ a combined theoretical and experimental treatment of femtosecond time-resolved ARPES (tr-ARPES) show how population dynamics measured using tr-ARPES can be used to separate electron-boson interactions from electron-electron interactions. We demonstrate a quantitative analysis of a well-defined electron-boson interaction in the unoccupied spectrum of the cuprate Bi2Sr2CaCu2O8+x characterized by an excited population decay time that maps directly to a discrete component of the equilibrium self-energy not readily isolated by static ARPES experiments.

7.
Phys Rev Lett ; 115(17): 176404, 2015 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-26551130

RESUMO

We present a magnetoinfrared spectroscopy study on a newly identified three-dimensional (3D) Dirac semimetal ZrTe(5). We observe clear transitions between Landau levels and their further splitting under a magnetic field. Both the sequence of transitions and their field dependence follow quantitatively the relation expected for 3D massless Dirac fermions. The measurement also reveals an exceptionally low magnetic field needed to drive the compound into its quantum limit, demonstrating that ZrTe(5) is an extremely clean system and ideal platform for studying 3D Dirac fermions. The splitting of the Landau levels provides direct, bulk spectroscopic evidence that a relatively weak magnetic field can produce a sizable Zeeman effect on the 3D Dirac fermions, which lifts the spin degeneracy of Landau levels. Our analysis indicates that the compound evolves from a Dirac semimetal into a topological line-node semimetal under the current magnetic field configuration.

8.
Phys Rev Lett ; 114(14): 147001, 2015 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-25910152

RESUMO

We report a fine tuned doping study of strongly overdoped Bi_{2}Sr_{2}CaCu_{2}O_{8+δ} single crystals using electronic Raman scattering. Combined with theoretical calculations, we show that the doping, at which the normal-state pseudogap closes, coincides with a Lifshitz quantum phase transition where the active holelike Fermi surface becomes electronlike. This conclusion suggests that the microscopic cause of the pseudogap is sensitive to the Fermi surface topology. Furthermore, we find that the superconducting transition temperature is unaffected by this transition, demonstrating that their origins are different on the overdoped side.

9.
Phys Rev Lett ; 115(25): 257402, 2015 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-26722943

RESUMO

We used low-energy, momentum-resolved inelastic electron scattering to study surface collective modes of the three-dimensional topological insulators Bi_{2}Se_{3} and Bi_{0.5}Sb_{1.5}Te_{3-x}Se_{x}. Our goal was to identify the "spin plasmon" predicted by Raghu and co-workers [Phys. Rev. Lett. 104, 116401 (2010)]. Instead, we found that the primary collective mode is a surface plasmon arising from the bulk, free carriers in these materials. This excitation dominates the spectral weight in the bosonic function of the surface χ^{"}(q,ω) at THz energy scales, and is the most likely origin of a quasiparticle dispersion kink observed in previous photoemission experiments. Our study suggests that the spin plasmon may mix with this other surface mode, calling for a more nuanced understanding of optical experiments in which the spin plasmon is reported to play a role.

10.
Phys Rev Lett ; 113(9): 096401, 2014 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-25215996

RESUMO

The characteristics of topological insulators are manifested in both their surface and bulk properties, but the latter remain to be explored. Here we report bulk signatures of pressure-induced band inversion and topological phase transitions in Pb(1-x)Sn(x)Se (x=0.00, 0.15, and 0.23). The results of infrared measurements as a function of pressure indicate the closing and the reopening of the band gap as well as a maximum in the free carrier spectral weight. The enhanced density of states near the band gap in the topological phase gives rise to a steep interband absorption edge. The change of density of states also yields a maximum in the pressure dependence of the Fermi level. Thus, our conclusive results provide a consistent picture of pressure-induced topological phase transitions and highlight the bulk origin of the novel properties in topological insulators.

11.
Cerebellum ; 5(2): 146-54, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16818389

RESUMO

The physiological properties of Purkinje neurons play a central role in their ability to regulate information transfer through the cerebellum. A number of ion channels contribute to Purkinje neuron physiology including an abundance of P-type Ca2+ channels, particularly in the dendritic region. Purkinje neurons also express L-type Ca2+ channels both during development and in the mature state. However, a role for L-type channels in Purkinje neuron physiology has yet to be fully defined. In the current study we used physiological recordings from cultured Purkinje neurons and the L-type Ca2+ channel agonist S-(-)-Bay K to assess a potential role for L-type Ca2+ channels in spike firing. Results show that Bay K alters current-evoked spike firing in young, immature Purkinje neurons without dendritic structure and in older, more mature Purkinje neurons with dendritic structure. Bay K also enhanced Ca2+ signals associated with the current-evoked spike firing. The effect of Bay K was more prominent in the young Purkinje neurons than in the older Purkinje neurons, suggesting that L-type Ca2+ channels may be more important in the Purkinje neuron physiology during the early stages of development rather than at mature stages. In the older Purkinje neurons, immunohistochemical studies using antibodies to L-type Ca2+ channels showed more intense immunolabeling in the somatic region than in the dendritic region. This result suggests that L-type Ca2+ channels may play a more important role in somatic physiology than dendritic physiology, whereas P-type channels may play a more important role in dendritic physiology.


Assuntos
Potenciais de Ação/fisiologia , Canais de Cálcio Tipo L/metabolismo , Sinalização do Cálcio/fisiologia , Córtex Cerebelar/embriologia , Córtex Cerebelar/crescimento & desenvolvimento , Células de Purkinje/metabolismo , Potenciais de Ação/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Cálcio/metabolismo , Agonistas dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo L/efeitos dos fármacos , Sinalização do Cálcio/efeitos dos fármacos , Diferenciação Celular/fisiologia , Células Cultivadas , Córtex Cerebelar/citologia , Dendritos/metabolismo , Dendritos/ultraestrutura , Imuno-Histoquímica , Técnicas de Patch-Clamp , Células de Purkinje/citologia , Células de Purkinje/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Membranas Sinápticas/efeitos dos fármacos , Membranas Sinápticas/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...