Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3067, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594282

RESUMO

Co-based catalysts are promising candidates to replace Ir/Ru-based oxides for oxygen evolution reaction (OER) catalysis in an acidic environment. However, both the reaction mechanism and the active species under acidic conditions remain unclear. In this study, by combining surface-sensitive soft X-ray absorption spectroscopy characterization with electrochemical analysis, we discover that the acidic OER activity of Co-based catalysts are determined by their surface oxidation/spin state. Surfaces composed of only high-spin CoII are found to be not active due to their unfavorable water dissociation to form CoIII-OH species. By contrast, the presence of low-spin CoIII is essential, as it promotes surface reconstruction of Co oxides and, hence, OER catalysis. The correlation between OER activity and Co oxidation/spin state signifies a breakthrough in defining the structure-activity relationship of Co-based catalysts for acidic OER, though, interestingly, such a relationship does not hold in alkaline and neutral environments. These findings not only help to design efficient acidic OER catalysts, but also deepen the understanding of the reaction mechanism.

2.
Appl Phys A Mater Sci Process ; 129(8): 590, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37529696

RESUMO

The electric field driven acceleration of plasma ions is an intrinsic effect in laser-induced plasma plumes and is responsible for the generation of high-energy ions. At high laser fluences (≥ 2 J/cm2), multiply charged ions are formed and affect the plume expansion dynamics. In this paper, we used kinetic energy-resolved mass spectrometry to investigate the relative abundance and kinetic energy distributions of singly- and doubly-charged ions produced by KrF-laser ablation of nine different oxide targets. The doubly charged metal ions with a lower mass-to-charge (m/z) ratio show narrow energy distributions at high average kinetic energies coinciding with the cutoff energies for the singly-charged ion distributions. The observation suggests that the recombination of higher charged ions plays a prominent role in the formation of the high-energy tail for singly-charged ions. The results are discussed in terms of component volatility and a dynamic double layer, where ions with different m/z values experience different accelerations.

3.
Chem Soc Rev ; 52(7): 2294-2321, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-36916771

RESUMO

Nanoscale thin films are widely implemented across a plethora of technological and scientific areas, and form the basis for many advancements that have driven human progress, owing to the high degree of functional tunability based on the chemical composition. Pulsed laser deposition is one of the multiple physical vapour deposition routes to fabricate thin films, employing laser energy to eject material from a target in the form of a plasma. A substrate, commonly a single-crystal oxide, is placed in the path of the plume and acts as a template for the arriving species from the target to coalesce and self-assemble into a thin film. This technique is tremendously useful to produce crystalline films, due to the wide range of atmospheric conditions and the extent of possible chemical complexity of the target. However, this flexibility results in a high degree of complexity, oftentimes requiring rigorous optimisation of the growth parameters to achieve high quality crystalline films with desired composition. In this tutorial review, we aim to reduce the complexity and the barrier to entry for the controlled growth of complex oxides by pulsed laser deposition. We present an overview of the fundamental and practical aspects of pulsed laser deposition, discuss the consequences of tailoring the growth parameters on the thin film properties, and describe in situ monitoring techniques that are useful in gaining a deeper understanding of the properties of the resultant films. Particular emphasis is placed on the general relationships between the growth parameters and the consequent structural, chemical and functional properties of the thin films. In the final section, we discuss the open questions within the field and possible directions to further expand the utility of pulsed laser deposition.

4.
Appl Phys A Mater Sci Process ; 129(2): 138, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36699629

RESUMO

We report on the properties of laser-induced plasma plumes generated by ns pulsed excimer lasers as used for pulsed laser deposition to prepare thin oxide films. A focus is on the time and spatial evolution of chemical species in the plasma plume as well as the mechanisms related to the plume expansion. The overall dynamics of such a plume is governed by the species composition in particular if three or more elements are involved. We studied the temporal evolution of the plume, the composition of the chemical species in the plasma, as well as their electric charge. In particular, ionized species can have an important influence on film growth. Likewise, the different oxygen sources contributing to the overall oxygen content of an oxide film are presented and discussed. Important for the growth of oxide thin films is the compositional transfer of light element such as oxygen or Li. We will show and discuss how to monitor these light elements using plasma spectroscopy and plasma imaging and outline some consequences of our experimental results. Supplementary Information: The online version contains supplementary material available at 10.1007/s00339-023-06408-4.

5.
Materials (Basel) ; 15(14)2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35888328

RESUMO

The gas-phase reaction dynamics and kinetics in a laser induced plasma are very much dependent on the interactions of the evaporated target material and the background gas. For metal (M) and metal-oxygen (MO) species ablated in an Ar and O2 background, the expansion dynamics in O2 are similar to the expansion dynamics in Ar for M+ ions with an MO+ dissociation energy smaller than O2. This is different for metal ions with an MO+ dissociation energy larger than for O2. This study shows that the plume expansion in O2 differentiates itself from the expansion in Ar due to the formation of MO+ species. It also shows that at a high oxygen background pressure, the preferred kinetic energy range to form MO species as a result of chemical reactions in an expanding plasma, is up to 5 eV.

6.
Proc Natl Acad Sci U S A ; 117(40): 24764-24770, 2020 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-32958669

RESUMO

In the high spin-orbit-coupled Sr2IrO4, the high sensitivity of the ground state to the details of the local lattice structure shows a large potential for the manipulation of the functional properties by inducing local lattice distortions. We use epitaxial strain to modify the Ir-O bond geometry in Sr2IrO4 and perform momentum-dependent resonant inelastic X-ray scattering (RIXS) at the metal and at the ligand sites to unveil the response of the low-energy elementary excitations. We observe that the pseudospin-wave dispersion for tensile-strained Sr2IrO4 films displays large softening along the [h,0] direction, while along the [h,h] direction it shows hardening. This evolution reveals a renormalization of the magnetic interactions caused by a strain-driven cross-over from anisotropic to isotropic interactions between the magnetic moments. Moreover, we detect dispersive electron-hole pair excitations which shift to lower (higher) energies upon compressive (tensile) strain, manifesting a reduction (increase) in the size of the charge gap. This behavior shows an intimate coupling between charge excitations and lattice distortions in Sr2IrO4, originating from the modified hopping elements between the t2g orbitals. Our work highlights the central role played by the lattice degrees of freedom in determining both the pseudospin and charge excitations of Sr2IrO4 and provides valuable information toward the control of the ground state of complex oxides in the presence of high spin-orbit coupling.

7.
Phys Rev Lett ; 125(2): 026802, 2020 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-32701330

RESUMO

At an interface between a topological insulator (TI) and a conventional superconductor (SC), superconductivity has been predicted to change dramatically and exhibit novel correlations. In particular, the induced superconductivity by an s-wave SC in a TI can develop an order parameter with a p-wave component. Here we present experimental evidence for an unexpected proximity-induced novel superconducting state in a thin layer of the prototypical TI, Bi_{2}Se_{3} proximity coupled to Nb. From depth-resolved magnetic field measurements below the superconducting transition temperature of Nb, we observe a local enhancement of the magnetic field in Bi_{2}Se_{3} that exceeds the externally applied field, thus supporting the existence of an intrinsic paramagnetic Meissner effect arising from an odd-frequency superconducting state. Our experimental results are complemented by theoretical calculations supporting the appearance of such a component at the interface which extends into the TI. This state is topologically distinct from the conventional Bardeen-Cooper-Schrieffer state it originates from. To the best of our knowledge, these findings present a first observation of bulk odd-frequency superconductivity in a TI. We thus reaffirm the potential of the TI-SC interface as a versatile platform to produce novel superconducting states.

8.
PeerJ ; 7: e7394, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31423355

RESUMO

To ease nutritional stress on managed as well as native bee populations in agricultural habitats, agro-environmental protection schemes aim to provide alternative nutritional resources for bee populations during times of need. However, such efforts have so far focused on quantity (supply of flowering plants) and timing (flower-scarce periods) while ignoring the quality of the two main bee relevant flower-derived resources (pollen and nectar). As a first step to address this issue we have compiled one geographically explicit dataset focusing on pollen crude protein concentration, one measurement traditionally associated with pollen quality for bees. We attempt to provide a robust baseline for protein levels bees can collect in- (crop and weed species) and off-field (wild plants) in agricultural habitats around the globe. Using this dataset we identify crops which provide sub-optimal pollen resources in terms of crude protein concentration for bees and suggest potential plant genera that could serve as alternative resources for protein. This information could be used by scientists, regulators, bee keepers, NGOs and farmers to compare the pollen quality currently offered in alternative foraging habitats and identify opportunities to improve them. In the long run, we hope that additional markers of pollen quality will be added to the database in order to get a more complete picture of flower resources offered to bees and foster a data-informed discussion about pollinator conservation in modern agricultural landscapes.

9.
PeerJ ; 7: e6329, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30834180

RESUMO

There is growing concern that some bee populations are in decline, potentially threatening pollination security in agricultural and non-agricultural landscapes. Among the numerous causes associated with this trend, nutritional stress resulting from a mismatch between bee nutritional needs and plant community provisioning has been suggested as one potential driver. To ease nutritional stress on bee populations in agricultural habitats, agri-environmental protection schemes aim to provide alternative nutritional resources for bee populations during times of need. However, such efforts have focused mainly on quantity (providing flowering plants) and timing (during flower-scarce periods), while largely ignoring the quality of the offered flower resources. In a first step to start addressing this information gap, we have used literature data to compile a comprehensive geographically explicit dataset on nectar quality (i.e., total sugar concentration), offered to bees both within fields (crop and weed species) as well as outside fields (wild species) around the globe. Social bees are particularly sensitive to nectar sugar concentrations, which directly impact calorie influx into the colony and consequently their fitness making it an important resource quality marker. We find that the total nectar sugar concentrations in general do not differ between the three plant communities studied. In contrast we find increased variability in nectar quality in the wild plant community compared to crop and weed community, which is likely explained by the increased phylogenetic diversity in this category of plants. In a second step we explore the influence of local habitat on nectar quality and its variability utilizing a detailed sunflower (Helianthus annuus L.) data set and find that geography has a small, but significant influence on these parameters. In a third step we identify crop groups (genera), which provide sub-optimal nectar resources for bees and suggest high quality alternatives as potential nectar supplements. In the long term this data set could serve as a starting point to systematically collect more quality characteristics of plant provided resources to bees, which ultimately can be utilized by scientist, regulators, NGOs and farmers to improve the flower resources offered to bees. We hope that ultimately this data will help to ease nutritional stress for bee populations and foster a data informed discussion about pollinator conservation in modern agricultural landscapes.

10.
Sci Rep ; 7: 44753, 2017 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-28317838

RESUMO

A current challenge in the field of magnetoelectric multiferroics is to identify systems that allow a controlled tuning of states displaying distinct magnetoelectric responses. Here we show that the multiferroic ground state of the archetypal multiferroic TbMnO3 is dramatically modified by epitaxial strain. Neutron diffraction reveals that in highly strained films the magnetic order changes from the bulk-like incommensurate bc-cycloidal structure to commensurate magnetic order. Concomitant with the modification of the magnetic ground state, optical second-harmonic generation (SHG) and electric measurements show an enormous increase of the ferroelectric polarization, and a change in its direction from along the c- to the a-axis. Our results suggest that the drastic change of multiferroic properties results from a switch of the spin-current magnetoelectric coupling in bulk TbMnO3 to symmetric magnetostriction in epitaxially-strained TbMnO3. These findings experimentally demonstrate that epitaxial strain can be used to control single-phase spin-driven multiferroic states.

12.
Sci Rep ; 5: 12309, 2015 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-26169351

RESUMO

The superconductor at the LaAlO3-SrTiO3 interface provides a model system for the study of two-dimensional superconductivity in the dilute carrier density limit. Here we experimentally address the pairing mechanism in this superconductor. We extract the electron-phonon spectral function from tunneling spectra and conclude, without ruling out contributions of further pairing channels, that electron-phonon mediated pairing is strong enough to account for the superconducting critical temperatures. Furthermore, we discuss the electron-phonon coupling in relation to the superconducting phase diagram. The electron-phonon spectral function is independent of the carrier density, except for a small part of the phase diagram in the underdoped region. The tunneling measurements reveal that the increase of the chemical potential with increasing carrier density levels off and is zero in the overdoped region of the phase diagram. This indicates that the additionally induced carriers do not populate the band that hosts the superconducting state and that the superconducting order parameter therefore is weakened by the presence of charge carriers in another band.

13.
Sci Technol Adv Mater ; 16(1): 015001, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27877751

RESUMO

Highly textured thin films with small grain boundary regions can be used as model systems to directly measure the bulk conductivity of oxygen ion conducting oxides. Ionic conducting thin films and epitaxial heterostructures are also widely used to probe the effect of strain on the oxygen ion migration in oxide materials. For the purpose of these investigations a good lattice matching between the film and the substrate is required to promote the ordered film growth. Moreover, the substrate should be a good electrical insulator at high temperature to allow a reliable electrical characterization of the deposited film. Here we report the fabrication of an epitaxial heterostructure made with a double buffer layer of BaZrO3 and SrTiO3 grown on MgO substrates that fulfills both requirements. Based on such template platform, highly ordered (001) epitaxially oriented thin films of 15% Sm-doped CeO2 and 8 mol% Y2O3 stabilized ZrO2 are grown. Bulk conductivities as well as activation energies are measured for both materials, confirming the success of the approach. The reported insulating template platform promises potential application also for the electrical characterization of other novel electrolyte materials that still need a thorough understanding of their ionic conductivity.

14.
Nat Commun ; 5: 3797, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24827387

RESUMO

Microcalcifications can be indicative in the diagnosis of early breast cancer. Here we report a non-invasive diagnostic method that may potentially distinguish between different types of microcalcifications using X-ray phase-contrast imaging. Our approach exploits the complementary nature of the absorption and small-angle scattering signals of microcalcifications, obtained simultaneously with an X-ray grating interferometer on a conventional X-ray tube. We demonstrate that the new approach has 100% sensitivity and specificity when applied to phantom data, and we provide evidence of the solidity of the technique by showing its discrimination power when applied to fixed biopsies, to non-fixed tissue specimens and to fresh, whole-breast samples. The proposed method might be further developed to improve early breast cancer diagnosis and has the potential to increase the diagnostic accuracy and reduce the number of uncomfortable breast biopsies, or, in case of widespread microcalcifications, to select the biopsy site before intervention.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Calcinose/diagnóstico por imagem , Carcinoma/diagnóstico por imagem , Mamografia/métodos , Doenças Mamárias/complicações , Doenças Mamárias/diagnóstico , Doenças Mamárias/diagnóstico por imagem , Neoplasias da Mama/complicações , Neoplasias da Mama/diagnóstico , Calcinose/complicações , Calcinose/diagnóstico , Carcinoma/diagnóstico , Feminino , Humanos , Sensibilidade e Especificidade
15.
PLoS One ; 7(1): e30023, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22253863

RESUMO

The development of insecticides requires valid risk assessment procedures to avoid causing harm to beneficial insects and especially to pollinators such as the honeybee Apis mellifera. In addition to testing according to current guidelines designed to detect bee mortality, tests are needed to determine possible sublethal effects interfering with the animal's vitality and behavioral performance. Several methods have been used to detect sublethal effects of different insecticides under laboratory conditions using olfactory conditioning. Furthermore, studies have been conducted on the influence insecticides have on foraging activity and homing ability which require time-consuming visual observation. We tested an experimental design using the radiofrequency identification (RFID) method to monitor the influence of sublethal doses of insecticides on individual honeybee foragers on an automated basis. With electronic readers positioned at the hive entrance and at an artificial food source, we obtained quantifiable data on honeybee foraging behavior. This enabled us to efficiently retrieve detailed information on flight parameters. We compared several groups of bees, fed simultaneously with different dosages of a tested substance. With this experimental approach we monitored the acute effects of sublethal doses of the neonicotinoids imidacloprid (0.15-6 ng/bee) and clothianidin (0.05-2 ng/bee) under field-like circumstances. At field-relevant doses for nectar and pollen no adverse effects were observed for either substance. Both substances led to a significant reduction of foraging activity and to longer foraging flights at doses of ≥0.5 ng/bee (clothianidin) and ≥1.5 ng/bee (imidacloprid) during the first three hours after treatment. This study demonstrates that the RFID-method is an effective way to record short-term alterations in foraging activity after insecticides have been administered once, orally, to individual bees. We contribute further information on the understanding of how honeybees are affected by sublethal doses of insecticides.


Assuntos
Abelhas/fisiologia , Comportamento Animal/efeitos dos fármacos , Comportamento Alimentar/efeitos dos fármacos , Guanidinas/toxicidade , Imidazóis/toxicidade , Inseticidas/toxicidade , Nitrocompostos/toxicidade , Ondas de Rádio , Tiazóis/toxicidade , Animais , Abelhas/efeitos dos fármacos , Neonicotinoides , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...