Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 141(32): 12682-12696, 2019 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-31299154

RESUMO

A superoxide-bridged dicopper(II) complex, [CuII2(XYLO)(O2•-)]2+ (1) (XYLO = binucleating m-xylyl derivative with a bridging phenolate ligand donor and two bis(2-{2-pyridyl}ethyl)amine arms), was generated from chemical oxidation of the peroxide-bridged dicopper(II) complex [CuII2(XYLO)(O22-)]+ (2), using ferrocenium (Fc+) derivatives, in 2-methyltetrahydrofuran (MeTHF) at -125 °C. Using Me10Fc+, a 1 ⇆ 2 equilibrium was established, allowing for calculation of the reduction potential of 1 as -0.525 ± 0.01 V vs Fc+/0. Addition of 1 equiv of strong acid to 2 afforded the hydroperoxide-bridged dicopper(II) species [CuII2(XYLO)(OOH)]2+ (3). An acid-base equilibrium between 3 and 2 was achieved through spectral titrations using a derivatized phosphazene base. The pKa of 3 was thus determined to be 24 ± 0.6 in MeTHF at -125 °C. Using a thermodynamic square scheme and the Bordwell relationship, the hydroperoxo complex (3) O-H bond dissociation free energy (BDFE) was calculated as 81.8 ± 1.5 (BDE = 86.8) kcal/mol. The observed oxidizing capability of [CuII2(XYLO)(O2•-)]2+ (1), as demonstrated in H atom abstraction reactions with certain phenolic ArO-H and hydrocarbon C-H substrates, provides direct support for this experimentally determined O-H BDFE. A kinetic study reveals a very fast reaction of TEMPO-H with 1 in MeTHF, with k (-100 °C) = 5.6 M-1 s-1. Density functional theory (DFT) calculations reveal how the structure of 1 may minimize stabilization of the superoxide moiety, resulting in its enhanced reactivity. The thermodynamic insights obtained herein highlight the importance of the interplay between ligand design and the generation and properties of copper (or other metal ion) bound O2-derived reduced species, such as pKa, reduction potential, and BDFE; these may be relevant to the capabilities (i.e., oxidizing power) of reactive oxygen intermediates in metalloenzyme chemical system mediated oxidative processes.


Assuntos
Complexos de Coordenação/química , Peróxidos/química , Superóxidos/química , Ácido Ascórbico/química , Cobre/química , Teoria da Densidade Funcional , Hidrogênio/química , Ligantes , Modelos Químicos , Oxirredução , Oxigênio/química , Termodinâmica
2.
Inorg Chem ; 52(16): 9254-65, 2013 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-23909761

RESUMO

The photophysical properties of bis(phosphine) Pt(II) complexes constructed from 2,6-bis(pyrid-3-ylethynyl) aniline and 2,6-bis(pyrid-4-ylethynyl) aniline vary significantly, even though the complexes differ only in the position of the coordinating nitrogen. By capping the ligands with an aryl bis(phosphine) Pt(II) metal acceptor, the photophysical properties of the two isomeric systems were directly compared, revealing that the low-energy absorption and emission bands of the two systems were separated by 30 nm (1804 cm(-1)) and 39 nm (1692 cm(-1)), respectively. From the analysis of time-dependent density functional (TD-DFT) calculations and excited-state lifetime measurements, it was determined that the nature of the Pt-N bond in the HOMO and the sums of the radiative (k(rad)) and nonradiative (k(nr)) rate constants were significantly different in the two systems. As the dominant nonradiative decay pathway in aniline systems is relaxation from the triplet state through intersystem crossing (ISC), the difference in k(nr) can be ascribed to changes in ISC between isomers of the bis(phosphine) Pt(II)-capped 2,6-bis(pyrid-3-ylethynyl) aniline system. It was also determined that the photophysical properties of these capped systems can be altered by functionalizing the aryl capping ligand on the bis(phosphine) Pt(II) metal center, which perturbs the molecular orbitals involved in the observed optical transitions. In addition, an isoelectronic bis(phosphine) Pd(II)-capped system was prepared for comparison with the bis(phosphine) Pt(II) suite of complexes. The Pd(II) system showed significant changes in its low-energy absorption band, but preserved the characteristic emissive properties of its Pt(II) analogue with an even higher quantum yield.


Assuntos
Aminas/química , Compostos Organoplatínicos/química , Fosfinas/química , Modelos Moleculares , Estrutura Molecular , Compostos Organoplatínicos/síntese química , Processos Fotoquímicos , Teoria Quântica
3.
J Am Chem Soc ; 135(37): 13676-9, 2013 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-23980638

RESUMO

Supramolecular coordination complexes (SCCs) have been proposed for applications necessitating photon emitting properties; however, two critical characteristics, facile tunability and high emission quantum yields, have yet to be demonstrated on SCC platforms. Herein, a series of functionalized D2h [D2A2] rhomboids (D = 2,6-bis(4-ethynylpyridine)aniline-based ligands; A = 2,9-bis[trans-Pt(PEt3)2NO3]phenanthrene) is described with emission wavelengths spanning the visible region (λmax = 476-581 nm). Tuning was achieved by simple functional group modifications para to the aniline amine on the donor building block. Steady-state absorption and emission profiles were obtained for each system and are discussed. When the Hammett σ(para) constants for the functional groups para to the aniline amine were plotted versus the wavenumber (cm(-1)) for the λmax of the emission profile, a linear relationship was observed. By utilizing this relationship, the emission wavelength of a given rhomboid can be predetermined on the basis of the Hammett constant of the functionality employed on the donor precursor. This range of visible light emission for a suite of simple rhomboids along with the predictive nature of the wavelength of emission is unprecedented for these types of systems.


Assuntos
Luz , Compostos Organometálicos , Ligantes , Modelos Moleculares , Compostos Organometálicos/síntese química , Compostos Organometálicos/química , Fenantrenos/química , Piridinas/química
4.
Chem Asian J ; 8(10): 2423-9, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23775836

RESUMO

The design of supramolecular coordination complexes (SCCs) is typically predicated on the use of rigid molecular building blocks through which the structural outcome is determined based on the number and orientation of labile coordination sites on metal acceptors, and the angularity of the ligand donors that are to bridge these nodes. Three-component systems extend the complexity of self-assembly by utilizing two different Lewis base donors in concert with a metal that favors a heteroligated coordination environment. The thermodynamic preference for heteroligation provides a new design principle to the formation of SCCs, wherein multicomponent architectures need not employ only rigid donors. Herein, we exploit the self-selection processes of bis(phosphine) Pt(II) metal centers which favor mixed Pt(pyridyl)(carboxylate) coordination spheres over their homoligated counterparts, specifically using alkyl-based dicarboxylate ligands instead of traditionally rigid phenyl, alkenyl, or ethynyl variants. Using this mode of assembly, flexible-based 2D and 3D SCCs containing long alkyl chains were synthesized and characterized. Density functional theory (DFT) and natural population analysis (NPA) calculations were performed on model systems to probe the thermodynamic preference for heteroligated coordination spheres in the experimental systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...