Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurology ; 100(5): e485-e496, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36302664

RESUMO

BACKGROUND AND OBJECTIVE: Theories assume that thalamic stroke may cause aphasia because of dysfunction in connected cortical networks. This takes into account that brain functions are organized in distributed networks, and in turn, localized damage may result in a network disorder such as thalamic aphasia. With this study, we investigate whether the integration of the thalamus into specific thalamocortical networks underlies symptoms after thalamic stroke. We hypothesize that thalamic lesions in patients with language impairments are functionally connected to cortical networks for language and cognition. METHODS: We combined nonparametric lesion mapping methods in a retrospective cohort of patients with acute or subacute first-ever thalamic stroke. A relationship between lesion location and language impairments was assessed using nonparametric voxel-based lesion-symptom mapping. This method reveals regions more frequently damaged in patients with compared with those without a symptom of interest. To test whether these symptoms are linked to a common thalamocortical network, we additionally performed lesion-network-symptom mapping. This method uses normative connectome data from resting-state fMRI of healthy participants (n = 65) for functional connectivity analyses, with lesion sites serving as seeds. Resulting lesion-dependent network connectivity of patients with language impairments was compared with those with motor and sensory deficits as baseline. RESULTS: A total of 101 patients (mean [SD] age 64.1 [14.6] years, 57 left, 42 right, and 2 bilateral lesions) were included in the study. Voxel-based lesion-symptom mapping showed an association of language impairments with damage to left mediodorsal thalamic nucleus lesions. Lesion-network-symptom mapping revealed that language compared with sensory deficits were associated with higher normative lesion-dependent network connectivity to left frontotemporal language networks and bilateral prefrontal, insulo-opercular, midline cingular, and parietal domain-general networks. Lesions related to motor and sensory deficits showed higher lesion-dependent network connectivity within the sensorimotor network spanning prefrontal, precentral, and postcentral cortices. DISCUSSION: Thalamic aphasia relates to lesions in the left mediodorsal thalamic nucleus and to functionally connected left cortical language and bilateral cortical networks for cognitive control. This suggests that dysfunction in thalamocortical networks contributes to thalamic aphasia. We propose that inefficient integration between otherwise undamaged domain-general and language networks may cause thalamic aphasia.


Assuntos
Afasia , Transtornos da Linguagem , Acidente Vascular Cerebral , Humanos , Pessoa de Meia-Idade , Estudos Retrospectivos , Afasia/etiologia , Afasia/complicações , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/patologia , Córtex Cerebral/patologia , Tálamo , Transtornos da Linguagem/diagnóstico por imagem , Transtornos da Linguagem/etiologia , Imageamento por Ressonância Magnética/métodos , Mapeamento Encefálico
2.
Brain ; 144(10): 3264-3276, 2021 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-34142117

RESUMO

The study of pathological laughter and crying (PLC) allows insights into the neural basis of laughter and crying, two hallmarks of human nature. PLC is defined by brief, intense and frequent episodes of uncontrollable laughter or crying provoked by trivial stimuli. It occurs secondary to CNS disorders such as stroke, tumours or neurodegenerative diseases. Based on case studies reporting various lesions locations, PLC has been conceptualized as dysfunction in a cortico-limbic-subcortico-thalamo-ponto-cerebellar network. To test whether the heterogeneous lesion locations are indeed linked in a common network, we applied 'lesion network-symptom-mapping' to 70 focal lesions identified in a systematic literature search for case reports of PLC. In lesion network-symptom-mapping normative connectome data (resting state functional MRI, n = 100) is used to identify the brain regions that are likely affected by diaschisis based on the lesion locations. With lesion network-symptom-mapping we were able to identify a common network specific for PLC when compared with a control cohort (n = 270). This bilateral network is characterized by positive connectivity to the cingulate and temporomesial cortices, striatum, hypothalamus, mesencephalon and pons, and negative connectivity to the primary motor and sensory cortices. In the most influential pathophysiological model of PLC, a centre for the control and coordination of facial expressions, respiration and vocalization in the periaqueductal grey is assumed, which is controlled via two pathways: an emotional system that exerts excitatory control of the periaqueductal grey descending from the temporal and frontal lobes, basal ganglia and hypothalamus; and a volitional system descending from the lateral premotor cortices that can suppress laughter or crying. To test whether the positive and negative PLC subnetworks identified in our analyses can indeed be related to an emotional system and a volitional system, we identified lesions causing emotional (n = 15) or volitional facial paresis (n = 46) in a second literature search. Patients with emotional facial paresis show preserved volitional movements but cannot trigger emotional movements in the affected hemiface, while the reverse is true for volitional facial paresis. Importantly, these lesions map differentially onto the PLC subnetworks: the 'positive PLC subnetwork' is part of the emotional system and the 'negative PLC subnetwork' overlaps with the volitional system for the control of facial movements. Based on this network analysis we propose a two-hit model of PLC: a combination of direct lesion and indirect diaschisis effects cause PLC through the loss of inhibitory cortical control of a dysfunctional emotional system.


Assuntos
Encefalopatias/diagnóstico por imagem , Encefalopatias/psicologia , Encéfalo/diagnóstico por imagem , Choro/psicologia , Riso/psicologia , Rede Nervosa/diagnóstico por imagem , Idoso , Encéfalo/fisiopatologia , Encefalopatias/fisiopatologia , Choro/fisiologia , Feminino , Humanos , Riso/fisiologia , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Rede Nervosa/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...