Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mon Not R Astron Soc ; 469(1): 612-620, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28690343

RESUMO

We present a detailed theoretical study of the rotational excitation of CH+ due to reactive and nonreactive collisions involving C+(2P), H2, CH+, H and free electrons. Specifically, the formation of CH+ proceeds through the reaction between C+(2P) and H2(νH2 = 1, 2), while the collisional (de)excitation and destruction of CH+ is due to collisions with hydrogen atoms and free electrons. State-to-state and initial-state-specific rate coefficients are computed in the kinetic temperature range 10-3000 K for the inelastic, exchange, abstraction and dissociative recombination processes using accurate potential energy surfaces and the best scattering methods. Good agreement, within a factor of 2, is found between the experimental and theoretical thermal rate coefficients, except for the reaction of CH+ with H atoms at kinetic temperatures below 50 K. The full set of collisional and chemical data are then implemented in a radiative transfer model. Our Non-LTE calculations confirm that the formation pumping due to vibrationally excited H2 has a substantial effect on the excitation of CH+ in photon-dominated regions. In addition, we are able to reproduce, within error bars, the far-infrared observations of CH+ toward the Orion Bar and the planetary nebula NGC 7027. Our results further suggest that the population of νH2 = 2 might be significant in the photon-dominated region of NGC 7027.

2.
J Chem Phys ; 146(20): 204109, 2017 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-28571387

RESUMO

A quantitative theoretical study of the dissociative recombination of SH+ with electrons has been carried out. Multireference, configuration interaction calculations were used to determine accurate potential energy curves for SH+ and SH. The block diagonalization method was used to disentangle strongly interacting SH valence and Rydberg states and to construct a diabatic Hamiltonian whose diagonal matrix elements provide the diabatic potential energy curves. The off-diagonal elements are related to the electronic valence-Rydberg couplings. Cross sections and rate coefficients for the dissociative recombination reaction were calculated with a stepwise version of the multichannel quantum defect theory, using the molecular data provided by the block diagonalization method. The calculated rates are compared with the most recent measurements performed on the ion Test Storage Ring (TSR) in Heidelberg, Germany.

3.
J Chem Phys ; 141(6): 064305, 2014 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-25134569

RESUMO

The predissociation of the 3pπD¹Π(u)⁺, v ≥ 3, N = 2, and N = 3 levels of diatomic hydrogen is calculated by ab initio multichannel quantum defect theory combined with a R-matrix type approach that accounts for interfering predissociation and autoionization. The theory yields absorption line widths and shapes that are in good agreement with those observed in the high-resolution synchrotron vacuum-ultraviolet absorption spectra obtained by Dickenson et al. [J. Chem. Phys. 133, 144317 (2010)] at the DESIRS beamline of the SOLEIL synchrotron. The theory predicts further that many of the D state resonances with v ⩾ 6 exhibit a complex fine structure which cannot be modeled by the Fano profile formula and which has not yet been observed experimentally.

4.
Phys Rev Lett ; 102(22): 223202, 2009 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-19658863

RESUMO

Merging an HD+ beam with velocity matched electrons in a heavy ion storage ring we observed rapid cooling of the rotational excitations of the HD+ ions by superelastic collisions (SEC) with the electrons. The cooling process is well described using theoretical SEC rate coefficients obtained by combining the molecular R-matrix approach with the adiabatic nuclei rotation approximation. We verify the DeltaJ=-2 SEC rate coefficients, which are predicted to be dominant as opposed to the DeltaJ=-1 rates and to amount to (1-2)x10;{-6} cm;{3} s;{-1} for initial angular momentum states with J< or =7, to within 30%.

5.
Nature ; 412(6850): 871-2, 2001 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-11528463
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...