Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
iScience ; 26(3): 106129, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36876130

RESUMO

The aim of this study was to analyze the acceptance of different policy measures affecting meat consumption in Switzerland. We conducted qualitative interviews with leading stakeholders and elaborated 37 policy measures for reducing meat consumption. In a standardized survey, we analyzed the acceptance of these measures and important preconditions for their implementation. Measures with potentially the biggest direct leverage, such as a VAT increase on meat products, were highly rejected. We found high levels of acceptance for measures that do not directly affect meat consumption but have the potential for significant changes of meat consumption in the longer run - such as research investment and sustainable diet education. Furthermore, some measures with considerable short-term effects were widely accepted (e.g., stricter animal welfare standards, ban of meat advertisements). These measures could be a promising starting point for policy makers aiming at a transformation of the food system toward lower levels of meat consumption.

3.
Cytotherapy ; 25(2): 105-119, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36115756

RESUMO

Adipose tissue presents a comparably easy source for obtaining stem cells, and more studies are increasingly investigating the therapeutic potential of adipose-derived stem cells. Wound healing, especially in chronic wounds, and treatment of skin diseases are some of the fields investigated. In this narrative review, the authors give an overview of some of the latest studies concerning wound healing as well as treatment of several skin diseases and concentrate on the different forms of application of adipose-derived stem cells.


Assuntos
Dermatopatias , Cicatrização , Humanos , Pele , Adipócitos , Tecido Adiposo , Células-Tronco , Dermatopatias/terapia
4.
Genes (Basel) ; 12(12)2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34946811

RESUMO

Congenital primary hypothyroidism (CH; OMIM 218700) is characterized by an impaired thyroid development, or dyshormonogenesis, and can lead to intellectual disability and growth retardation if untreated. Most of the children with congenital hypothyroidism present thyroid dysgenesis, a developmental anomaly of the thyroid. Various genes have been associated with thyroid dysgenesis, but all known genes together can only explain a small number of cases. To identify novel genetic causes for congenital hypothyroidism, we performed trio whole-exome sequencing in an affected newborn and his unaffected parents. A predicted damaging de novo missense mutation was identified in the ZBTB26 gene (Zinc Finger A and BTB Domain containing 26). An additional cohort screening of 156 individuals with congenital thyroid dysgenesis identified two additional ZBTB26 gene variants of unknown significance. To study the underlying disease mechanism, morpholino knock-down of zbtb26 in Xenopus laevis was carried out, which demonstrated significantly smaller thyroid anlagen in knock-down animals at tadpole stage. Marker genes expressed in thyroid tissue precursors also indicated a specific reduction in the Xenopus ortholog of human Paired-Box-Protein PAX8, a transcription factor required for thyroid development, which could be rescued by adding zbtb26. Pathway and network analysis indicated network links of ZBTB26 to PAX8 and other genes involved in thyroid genesis and function. GWAS associations of ZBTB26 were found with height. Together, our study added a novel genetic risk factor to the list of genes underlying congenital primary hypothyroidism and provides additional support that de novo mutations, together with inherited variants, might contribute to the genetic susceptibility to CH.


Assuntos
Hipotireoidismo Congênito/genética , Predisposição Genética para Doença/genética , Fatores de Transcrição Kruppel-Like/genética , Mutação de Sentido Incorreto/genética , Animais , Criança , Humanos , Masculino , Fatores de Risco , Glândula Tireoide/patologia , Sequenciamento do Exoma/métodos , Xenopus laevis/genética
5.
PLoS Genet ; 16(11): e1009088, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33137814

RESUMO

Mutations in the molecular co-chaperone Bcl2-associated athanogene 3 (BAG3) are found to cause dilated cardiomyopathy (DCM), resulting in systolic dysfunction and heart failure, as well as myofibrillar myopathy (MFM), which is characterized by protein aggregation and myofibrillar disintegration in skeletal muscle cells. Here, we generated a CRISPR/Cas9-induced Bag3 knockout zebrafish line and found the complete preservation of heart and skeletal muscle structure and function during embryonic development, in contrast to morpholino-mediated knockdown of Bag3. Intriguingly, genetic compensation, a process of transcriptional adaptation which acts independent of protein feedback loops, was found to prevent heart and skeletal muscle damage in our Bag3 knockout model. Proteomic profiling and quantitative real-time PCR analyses identified Bag2, another member of the Bag protein family, significantly upregulated on a transcript and protein level in bag3-/- mutants. This implied that the decay of bag3 mutant mRNA in homozygous bag3-/- embryos caused the transcriptional upregulation of bag2 expression. We further demonstrated that morpholino-mediated knockdown of Bag2 in bag3-/- embryos evoked severe functional and structural heart and skeletal muscle defects, which are similar to Bag3 morphants. However, Bag2 knockdown in bag3+/+ or bag3+/- embryos did not result in (cardio-)myopathy. Finally, we found that inhibition of the nonsense-mediated mRNA decay (NMD) machinery by knockdown of upf1, an essential NMD factor, caused severe heart and skeletal muscle defects in bag3-/- mutants due to the blockade of transcriptional adaptation of bag2 expression. Our findings provide evidence that genetic compensation might vitally influence the penetrance of disease-causing bag3 mutations in vivo.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/deficiência , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Reguladoras de Apoptose/deficiência , Proteínas Reguladoras de Apoptose/genética , Cardiomiopatias/genética , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Proteínas de Peixe-Zebra/deficiência , Proteínas de Peixe-Zebra/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Cardiomiopatias/metabolismo , Cardiomiopatias/patologia , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/metabolismo , Cardiomiopatia Dilatada/patologia , Modelos Animais de Doenças , Insuficiência Cardíaca/patologia , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Doenças Musculares/genética , Doenças Musculares/metabolismo , Doenças Musculares/patologia , Mutação , Miocárdio/metabolismo , Miopatias Congênitas Estruturais/metabolismo , Fenótipo , Proteômica , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo
6.
J Mech Behav Biomed Mater ; 102: 103481, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31678737

RESUMO

OBJECTIVE: Different microenvironments trigger distinct differentiation of stem cells. Even without chemical supplementation, mechanical stimulation by shear stress may help to induce the desired differentiation. The cell format, such as three-dimensional (3D) microtissues (MTs), MT-derived cells or single cells (SCs), may have a pivotal impact as well. Here, we studied modulation of gene expression in human adipose-derived stem cells (ASCs) exposed to shear stress and/or after MT formation. MATERIALS AND METHODS: Electrospun meshes of poly-lactic-co-glycolic acid and amorphous calcium phosphate nanoparticles (PLGA/aCaP) at a weight ratio of 60:40 were seeded with human ASCs as MTs or as SCs and cultured in Dulbecco's modified Eagle's medium without chemical supplementation. After 2 weeks of static culture, the scaffolds were cultured statically for another 2 weeks or placed in a Bose® bioreactor with a flow rate per area of 0.16 mL cm-2 min-1. Stiffness of the scaffolds was assessed as a function of time. After 4 weeks, minimum stem cell criteria markers and selected markers of osteogenesis, endothelial cell differentiation, adipogenesis and chondrogenesis were analysed by quantitative real-time polymerase chain reaction. Additionally, cell distribution within the scaffolds and the allocation of the yes-associated protein (YAP) in the cells were assessed by immunohistochemistry. RESULTS: MTs decayed completely within 2 weeks after seeding on PLGA/aCaP. The osteogenic marker gene alkaline phosphatase and the endothelial cell marker gene CD31 were upregulated in MT-derived ASCs compared with SCs. Shear stress realised by fluid flow perfusion upregulated peroxisome proliferator-activated receptor gamma 2 expression in MT-derived ASCs and in SCs. The nuclear-to-cytoplasmic ratio of YAP expression was doubled under perfusion compared with that under static culture for MT-derived ASCs and SCs. CONCLUSIONS: Osteogenic and angiogenic commitments were more pronounced in MT-derived ASCs seeded on bone biomimetic electrospun nanocomposite PLGA/aCaP than in SCs seeded without induction medium. Furthermore, the static culture was superior to the perfusion regimen used here, as shear stress resulted in adipogenic commitment for MT-derived ASCs and SCs, although the YAP nuclear-to-cytoplasmic ratio indicated higher cell tensions under perfusion, usually associated with preferred osteogenic differentiation.


Assuntos
Nanocompostos , Osteogênese , Tecido Adiposo , Diferenciação Celular , Células Cultivadas , Expressão Gênica , Humanos , Osteogênese/genética , Células-Tronco , Alicerces Teciduais
7.
Development ; 146(9)2019 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-31036544

RESUMO

Organ left-right (LR) asymmetry is a conserved vertebrate feature, which is regulated by left-sided activation of Nodal signaling. Nodal asymmetry is established by a leftward fluid-flow generated at the ciliated LR organizer (LRO). Although the role of fibroblast growth factor (FGF) signaling pathways during mesoderm development is conserved, diverging results from different model organisms suggest a non-conserved function in LR asymmetry. Here, we demonstrate that FGF is required during gastrulation in a dual function at consecutive stages of Xenopus embryonic development. In the early gastrula, FGF is necessary for LRO precursor induction, acting in parallel with FGF-mediated mesoderm induction. During late gastrulation, the FGF/Ca2+-branch is required for specification of the flow-sensing lateral LRO cells, a function related to FGF-mediated mesoderm morphogenesis. This second function in addition requires input from the calcium channel Polycystin-2. Thus, analogous to mesoderm development, FGF activity is required in a dual role for laterality specification; namely, for generating and sensing leftward flow. Moreover, our findings in Xenopus demonstrate that FGF functions in LR development share more conserved features across vertebrate species than previously anticipated.


Assuntos
Fatores de Crescimento de Fibroblastos/metabolismo , Animais , Padronização Corporal/genética , Padronização Corporal/fisiologia , Cílios/metabolismo , Fatores de Crescimento de Fibroblastos/genética , Fatores de Transcrição Forkhead/metabolismo , Gástrula/metabolismo , Gastrulação/fisiologia , Mesoderma/metabolismo , Transdução de Sinais/fisiologia , Canais de Cátion TRPP/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis
8.
iScience ; 2: 76-85, 2018 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-30428378

RESUMO

Nodal signaling controls asymmetric organ placement during vertebrate embryogenesis. Nodal is induced by a leftward fluid flow at the ciliated left-right organizer (LRO). The mechanism of flow sensing, however, has remained elusive. pkd2 encodes the calcium channel Polycystin-2, which is required for kidney development and laterality, and may act in flow perception. Here, we have studied the role of Polycystin-2 in Xenopus and show that pkd2 is indispensable for left-right (LR) asymmetry. Knockdown of pkd2 prevented left-asymmetric nodal cascade induction in the lateral plate mesoderm. Defects were due to failure of LRO specification, morphogenesis, and, consequently, absence of leftward flow. Polycystin-2 synergizes with the unconventional nodal-type signaling molecule Xnr3 to induce the LRO precursor tissue before gastrulation, upstream of symmetry breakage. Our data uncover an unknown function of pkd2 in LR axis formation, which we propose represents an ancient role of Polycystin-2 during LRO induction in lower vertebrates.

9.
Chaos ; 28(6): 063114, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29960415

RESUMO

In the model system of two instantaneously and symmetrically coupled identical Stuart-Landau oscillators, we demonstrate that there exist stable solutions with symmetry-broken amplitude- and phase-locking. These states are characterized by a non-trivial fixed phase or amplitude relationship between both oscillators, while simultaneously maintaining perfectly harmonic oscillations of the same frequency. While some of the surrounding bifurcations have been previously described, we present the first detailed analytical and numerical description of these states and present analytically and numerically how they are embedded in the bifurcation structure of the system, arising both from the in-phase and the anti-phase solutions, as well as through a saddle-node bifurcation. The dependence of both the amplitude and the phase on parameters can be expressed explicitly with analytic formulas. As opposed to the previous reports, we find that these symmetry-broken states are stable, which can even be shown analytically. As an example of symmetry-breaking solutions in a simple and symmetric system, these states have potential applications as bistable states for switches in a wide array of coupled oscillatory systems.

10.
Biotechnol Bioeng ; 115(10): 2643-2653, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29981277

RESUMO

The coculture of osteogenic and angiogenic cells and the resulting paracrine signaling via soluble factors are supposed to be crucial for successfully engineering vascularized bone tissue equivalents. In this study, a coculture system combining primary human adipose-derived stem cells (hASCs) and primary human dermal microvascular endothelial cells (HDMECs) within two types of hydrogels based on methacryloyl-modified gelatin (GM) as three-dimensional scaffolds was examined for its support of tissue specific cell functions. HDMECs, together with hASCs as supporting cells, were encapsulated in soft GM gels and were indirectly cocultured with hASCs encapsulated in stiffer GM hydrogels additionally containing methacrylate-modified hyaluronic acid and hydroxyapatite particles. After 14 days, the hASC in the stiffer gels (constituting the "bone gels") expressed matrix proteins like collagen type I and fibronectin, as well as bone-specific proteins osteopontin and alkaline phosphatase. After 14 days of coculture with HDMEC-laden hydrogels, the viscoelastic properties of the bone gels were significantly higher compared with the gels in monoculture. Within the soft vascularization gels, the formed capillary-like networks were significantly longer after 14 days of coculture than the structures in the control gels. In addition, the stability as well as the complexity of the vascular networks was significantly increased by coculture. We discussed and concluded that osteogenic and angiogenic signals from the culture media as well as from cocultured cell types, and tissue-specific hydrogel composition all contribute to stimulate the interplay between osteogenesis and angiogenesis in vitro and are a basis for engineering vascularized bone.


Assuntos
Matriz Óssea/metabolismo , Diferenciação Celular , Células Endoteliais/metabolismo , Hidrogéis/química , Osteogênese , Células-Tronco/metabolismo , Alicerces Teciduais/química , Adulto , Técnicas de Cocultura , Durapatita/química , Células Endoteliais/citologia , Feminino , Gelatina/química , Humanos , Ácido Hialurônico/química , Pessoa de Meia-Idade , Neovascularização Fisiológica , Osteopontina/biossíntese , Células-Tronco/citologia
11.
Prog Biophys Mol Biol ; 138: 20-31, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30036562

RESUMO

The molecular mechanism essential for the formation of heart valves involves complex interactions of signaling molecules and transcription factors. The Mediator Complex (MC) functions as multi-subunit machinery to orchestrate gene transcription, especially for tissue-specific fine-tuning of transcriptional processes during development, also in the heart. Here, we analyzed the role of the MC subunit Med12 during atrioventricular canal (AVC) development and endocardial cushion formation, using the Med12-deficient zebrafish mutant trapped (tpd). Whereas primary heart formation was only slightly affected in tpd, we identified defects in AVC development and cardiac jelly formation. We found that although misexpression of bmp4 and versican in tpd hearts can be restored by overexpression of a modified version of the Sox9b transcription factor (harboring VP16 transactivation domain) that functions independent of its co-activator Med12, endocardial cushion development in tpd was not reconstituted. Interestingly, expression of tbx2b and its target hyaluronan synthase 2 (has2) - the synthase of hyaluronan (HA) in the heart - was absent in both uninjected and Sox9b-VP16 overexpressing tpd hearts. HA is a major ECM component of the cardiac jelly and required for endocardial cushion formation. Furthermore, we found secreted phosphoprotein 1 (spp1), an endocardial marker of activated AV endocardial cells, completely absent in tpd hearts, suggesting that crucial steps of the transformation of AV endocardial cells into endocardial cushions is blocked. We demonstrate that Med12 controls cardiac jelly formation Sox9-independently by regulating tbx2b and has2 expression and therefore the production of the glycosaminoglycan HA at the AVC to guarantee proper endocardial cushion development.


Assuntos
Valvas Cardíacas/crescimento & desenvolvimento , Coração/crescimento & desenvolvimento , Complexo Mediador/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/metabolismo , Animais , Endocárdio/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Hialuronan Sintases/metabolismo , Complexo Mediador/deficiência , Complexo Mediador/genética , Mutação , Proteínas de Peixe-Zebra/deficiência , Proteínas de Peixe-Zebra/genética
12.
J Mech Behav Biomed Mater ; 83: 84-93, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29684776

RESUMO

OBJECTIVE: Chemical supplementation of culture media to induce differentiation of adult stem cells seeded on a scaffold may mask other differentiation triggers such as scaffold stiffness, chemical composition or mechanical stimulation. However, stem cells can be differentiated towards osteoblasts without any supplementation given an appropriate osteogenic scaffold and an adequate mechanical stimulation. MATERIALS AND METHODS: Electrospun meshes of poly-lactic-co-glycolic acid and amorphous calcium phosphate nanoparticles (PLGA/aCaP) in a weight ratio of 60:40 were seeded with human adipose-derived stem cells (ASCs) and cultured in DMEM. After two weeks of static cultivation, they were either further cultivated statically for another two weeks (group 1), or placed in a Bose® bioreactor with a flow rate per area of 0.16 mL cm-2 min1 (group 2). Furthermore, group 3 was also cultivated under perfusion, however, with an additional uniaxial cyclic compression. Stiffness of the scaffolds was assessed as a function of time. After a total of four weeks, minimum stem cell criteria markers as well as typical markers for osteogenesis, endothelial cell differentiation, adipogenesis and chondrogenesis were analyzed by quantitative real-time PCR, cell distribution within the scaffolds by histology and protein expression by immunohistochemistry. RESULTS: Dynamic conditions (perfusion ±â€¯uniaxial cyclic compression) significantly upregulated gene and protein expression of PPAR-γ-2 compared to static cultivation, while osteogenic markers were slightly downregulated. However, the compression in the perfusion bioreactor favored osteogenesis compared to mere perfusion as indicated by upregulation of ALP, Runx2 and collagen I. This behavior was not only attributed to the compressive load, but also to the significant increase in stiffness of the scaffold. Furthermore, CD105 was significantly upregulated under compression. CONCLUSIONS: Although an osteogenic electrospun composite material with an organic (PLGA) and an inorganic phase (aCaP nanoparticles) was used as scaffold, the dynamic cultivation as realized by either perfusion alone or an additional compression did not upregulate typical osteogenic genes when compared to static cultivation. In contrast, there was a significant upregulation of the adipogenic gene PPAR-γ-2. However, this anti-osteogenic starting point evoked by mere perfusion was partially reversed by an additional compression. Our findings exemplify that bone tissue engineering using adult stem cells should consider any other differentiations that may be triggered and overwhelm the desired differentiation, although experimental conditions theoretically provide cues to achieve it - like an osteogenic scaffold and mechanical stimulation.


Assuntos
Materiais Biomiméticos/farmacologia , Nanocompostos/química , Osteogênese/efeitos dos fármacos , Resistência ao Cisalhamento , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Estresse Mecânico , Adipogenia/efeitos dos fármacos , Fenômenos Biomecânicos , Materiais Biomiméticos/química , Fosfatos de Cálcio/química , Condrogênese/efeitos dos fármacos , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Células-Tronco/metabolismo
13.
Curr Biol ; 27(4): 543-548, 2017 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-28190730

RESUMO

Conjoined twins fused at the thorax display an enigmatic left-right defect: although left twins are normal, laterality is disturbed in one-half of right twins [1-3]. Molecularly, this randomization corresponds to a lack of asymmetric Nodal cascade induction in right twins [4]. We studied leftward flow [5, 6] at the left-right organizer (LRO) [7, 8] in thoracopagus twins in Xenopus, which displayed a duplicated, fused, and ciliated LRO. Cilia were motile and produced a leftward flow from the right LRO margin of the right to the left margin of the left twin. Motility was required for correct laterality in left twins, as knockdown of dynein motor dnah9 prevented Nodal cascade induction. Nodal was rescued by parallel knockdown of the inhibitor dand5 [9, 10] on the left side of the left twin. Lack of Nodal induction in the right twin, despite the presence of flow, was due to insufficient suppression of dand5. Knockdown of dand5 at the center of the fused LRO resulted in asymmetric Nodal cascade induction in the right twin as well. Manipulation of leftward flow and dand5 in a targeted and sided manner induced the Nodal cascade in a predictable manner, in the left twin, the right one, both, or neither. Laterality in conjoined twins thus was determined by cilia-driven leftward fluid flow like in single embryos, which solves a century-old riddle, as the phenomenon was already studied by some of the founders of experimental embryology, including Dareste [11], Fol and Warynsky [12], and Spemann and Falkenberg [13] (reviewed in [14]).


Assuntos
Padronização Corporal , Gêmeos Unidos/embriologia , Xenopus laevis , Proteínas de Anfíbios/genética , Animais , Cílios/fisiologia , Modelos Animais de Doenças , Peptídeos e Proteínas de Sinalização Intercelular/genética , Gêmeos Unidos/patologia
14.
Artigo em Inglês | MEDLINE | ID: mdl-26651770

RESUMO

In a network of nonlocally coupled Stuart-Landau oscillators with symmetry-breaking coupling, we study numerically, and explain analytically, a family of inhomogeneous steady states (oscillation death). They exhibit multicluster patterns, depending on the cluster distribution prescribed by the initial conditions. Besides stable oscillation death, we also find a regime of long transients asymptotically approaching synchronized oscillations. To explain these phenomena analytically in dependence on the coupling range and the coupling strength, we first use a mean-field approximation, which works well for large coupling ranges but fails for coupling ranges, which are small compared to the cluster size. Going beyond standard mean-field theory, we predict the boundaries of the different stability regimes as well as the transient times analytically in excellent agreement with numerical results.

15.
PLoS One ; 8(9): e73646, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24058481

RESUMO

Breakage of bilateral symmetry in amphibian embryos depends on the development of a ciliated epithelium at the gastrocoel roof during early neurulation. Motile cilia at the gastrocoel roof plate (GRP) give rise to leftward flow of extracellular fluids. Flow is required for asymmetric gene expression and organ morphogenesis. Wnt signaling has previously been involved in two steps, Wnt/ß-catenin mediated induction of Foxj1, a regulator of motile cilia, and Wnt/planar cell polarity (PCP) dependent cilia polarization to the posterior pole of cells. We have studied Wnt11b in the context of laterality determination, as this ligand was reported to activate canonical and non-canonical Wnt signaling. Wnt11b was found to be expressed in the so-called superficial mesoderm (SM), from which the GRP derives. Surprisingly, Foxj1 was only marginally affected in loss-of-function experiments, indicating that another ligand acts in this early step of laterality specification. Wnt11b was required, however, for polarization of GRP cilia and GRP morphogenesis, in line with the known function of Wnt/PCP in cilia-driven leftward flow. In addition Xnr1 and Coco expression in the lateral-most GRP cells, which sense flow and generate the first asymmetric signal, was attenuated in morphants, involving Wnt signaling in yet another process related to symmetry breakage in Xenopus.


Assuntos
Padronização Corporal/genética , Cílios/metabolismo , Gástrula/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Wnt/genética , Proteínas de Xenopus/genética , Xenopus laevis/genética , Animais , Movimento Celular , Polaridade Celular , Cílios/genética , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Gástrula/embriologia , Mesoderma/citologia , Mesoderma/embriologia , Mesoderma/metabolismo , Neurulação/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transdução de Sinais , Proteínas Wnt/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/embriologia , Xenopus laevis/metabolismo
16.
Philos Trans A Math Phys Eng Sci ; 371(1999): 20120472, 2013 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-23960230

RESUMO

The modest aim of this case study is the non-invasive and pattern-selective stabilization of discrete rotating waves ('ponies on a merry-go-round') in a triangle of diffusively coupled Stuart-Landau oscillators. We work in a setting of symmetry-breaking equivariant Hopf bifurcation. Stabilization is achieved by delayed feedback control of Pyragas type, adapted to the selected spatio-temporal symmetry pattern. Pyragas controllability depends on the parameters for the diffusion coupling, the complex control amplitude and phase, the uncontrolled super-/sub-criticality of the individual oscillators and their soft/hard spring characteristics. We mathematically derive explicit conditions for Pyragas control to succeed.

17.
Curr Biol ; 22(1): 33-9, 2012 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-22177902

RESUMO

In vertebrates, most inner organs are asymmetrically arranged with respect to the main body axis [1]. Symmetry breakage in fish, amphibian, and mammalian embryos depends on cilia-driven leftward flow of extracellular fluid during neurulation [2-5]. Flow induces the asymmetric nodal cascade that governs asymmetric organ morphogenesis and placement [1, 6, 7]. In the frog Xenopus, an alternative laterality-generating mechanism involving asymmetric localization of serotonin at the 32-cell stage has been proposed [8]. However, no functional linkage between this early localization and flow at neurula stage has emerged. Here, we report that serotonin signaling is required for specification of the superficial mesoderm (SM), which gives rise to the ciliated gastrocoel roof plate (GRP) where flow occurs [5, 9]. Flow and asymmetry were lost in embryos in which serotonin signaling was downregulated. Serotonin, which we found uniformly distributed along the main body axes in the early embryo, was required for Wnt signaling, which provides the instructive signal to specify the GRP. Importantly, serotonin was required for Wnt-induced double-axis formation as well. Our data confirm flow as primary mechanism of symmetry breakage and suggest a general role of serotonin as competence factor for Wnt signaling during axis formation in Xenopus.


Assuntos
Padronização Corporal , Serotonina/metabolismo , Xenopus/embriologia , Xenopus/metabolismo , Animais , Blástula/metabolismo , Embrião não Mamífero/metabolismo , Mesoderma/metabolismo , Transdução de Sinais , Via de Sinalização Wnt , Proteínas de Xenopus/metabolismo
18.
Curr Biol ; 20(8): 738-43, 2010 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-20381352

RESUMO

Vertebrate laterality, which is manifested by asymmetrically placed organs [1], depends on asymmetric activation of the Nodal signaling cascade in the left lateral plate mesoderm [2]. In fish, amphibians, and mammals, a cilia-driven leftward flow of extracellular fluid acts upstream of the Nodal cascade [3-6]. The direct target of flow has remained elusive. In Xenopus, flow occurs at the gastrocoel roof plate (GRP) in the dorsal midline of the embryo [4, 7]. The GRP is bordered by a second, bilaterally symmetrical Nodal expression domain [8]. Here we identify the Nodal inhibitor Coco as a critical target of flow. Coco and Xenopus Nodal-related 1 (Xnr1) are coexpressed in the lateralmost ciliated GRP cells. Coco becomes downregulated on the left side of the GRP as a direct readout of flow. Ablation of flow prevented Coco repression, whereas Xnr1 expression was independent of flow. Loss of flow-induced laterality defects were rescued by knockdown of Coco on the left side. Parallel knockdown of Coco and Xnr1 in GRP cells restored laterality defects in flow-impaired embryos, demonstrating that Coco acted through GRP-expressed Xnr1. Coco thus acts as a critical target of flow, suggesting that symmetry is broken by flow-mediated left-asymmetric release of Nodal repression at the midline.


Assuntos
Morfogênese/fisiologia , Proteína Nodal/antagonistas & inibidores , Proteínas de Xenopus/metabolismo , Xenopus laevis/anatomia & histologia , Xenopus laevis/embriologia , Animais , Embrião não Mamífero/citologia , Embrião não Mamífero/fisiologia , Indução Embrionária , Proteína Nodal/metabolismo , Transdução de Sinais/fisiologia , Proteínas de Xenopus/genética
19.
Bioinformatics ; 21(7): 1271-3, 2005 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-15546937

RESUMO

Most multi-alignment methods are fully automated, i.e. they are based on a fixed set of mathematical rules. For various reasons, such methods may fail to produce biologically meaningful alignments. Herein, we describe a semi-automatic approach to multiple sequence alignment where biological expert knowledge can be used to influence the alignment procedure. The user can specify parts of the sequences that are biologically related to each other; our software program uses these sites as anchor points and creates a multiple alignment respecting these user-defined constraints. By using known functionally, structurally or evolutionarily related positions of the input sequences as anchor points, our method can produce alignments that reflect the true biological relationships among the input sequences more accurately than fully automated procedures can do.


Assuntos
Algoritmos , Proteínas/química , Proteínas/classificação , Alinhamento de Sequência/métodos , Análise de Sequência de Proteína/métodos , Software , Interface Usuário-Computador , Sequência de Aminoácidos , Dados de Sequência Molecular , Proteínas/análise , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...